 FlowerSnark - Maple Help

GraphTheory[SpecialGraphs]

 FlowerSnark
 construct flower snark graph
 GoldbergSnark
 construct Goldberg snark graph Calling Sequence FlowerSnark(K) GoldbergSnark(K) Parameters

 K - odd positive integer Description

 • A snark is a nontrivial cubic graph with chromatic index 4.
 • The FlowerSnark command creates the flower snark graphs, also known as Isaac's snarks. A flower snark with parameter K, is a 3-regular graph on 4*K vertices. The GoldbergSnark(K) command creates the Goldberg snark with parameter K. A Goldberg snark with parameter K, is a 3-regular graph on 8*K vertices. Examples

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$$\mathrm{with}\left(\mathrm{SpecialGraphs}\right):$
 > $F≔\mathrm{FlowerSnark}\left(5\right)$
 ${F}{≔}{\mathrm{Graph 1: an undirected unweighted graph with 20 vertices and 30 edge\left(s\right)}}$ (1)
 > $\mathrm{IsRegular}\left(F\right)$
 ${\mathrm{true}}$ (2)
 > $\mathrm{DrawGraph}\left(F\right)$ > $\mathrm{ChromaticIndex}\left(F\right)$
 ${4}$ (3)
 > $\mathrm{CircularChromaticNumber}\left(F\right)$
 $\frac{{5}}{{2}}$ (4)
 > $H≔\mathrm{GoldbergSnark}\left(5\right)$
 ${H}{≔}{\mathrm{Graph 2: an undirected unweighted graph with 40 vertices and 60 edge\left(s\right)}}$ (5)
 > $\mathrm{DrawGraph}\left(H\right)$ 