Overview of the GF (Galois Field) Package - Maple Programming Help

This page is an exact match for your search term. Click here to search for all help pages containing the term, "GF"

Overview of the GF (Galois Field) Package

 Calling Sequence GF(p, k, a)

Parameters

 p - prime integer k - positive integer a - (optional) irreducible polynomial of degree k over the integers mod p

Description

 • The GF command returns a module G of procedures and constants for doing arithmetic in the finite field GF(p^k), a Galois Field with ${p}^{k}$ elements. The field GF(p^k) is defined by the field extension GF(p)[x]/(a) where a is an irreducible polynomial of degree k over the integers mod p.
 • If a is not specified, an irreducible polynomial of degree k over the integers mod p is chosen at random.  It can be accessed as the constant G:-extension.  The elements of GF(p^k) are represented using the $\mathrm{modp1}$ representation.
 • First, you need to define an instance of a Galois field using, for example, G := GF(2, 3). This defines all operations for G, the field of characteristic 2 with 8 elements.
 • The G:-input and G:-output commands convert from an integer in the range $0..{p}^{k}-1$ to the corresponding polynomial and back. Alternatively, G:-ConvertIn and G:-ConvertOut convert an element from GF(p^k) to a Maple sum of products, a univariate polynomial where the variable used is that given in the argument a. Otherwise the name ? is used.
 • Arithmetic in the field is defined by the following functions. G:-+, G:--, G:-*, G:-^, G:-inverse, G:-/

$G:-+,G:--,G:-,G:-^,G:-\mathrm{inverse},G:-/$

 • Field arithmetic can be written very naturally by using a use statement; see the examples below.
 • The additive and multiplicative identities are given by G:-zero and G:-one.
 • The G:-trace, G:-norm, and G:-order commands compute the trace, norm and multiplicative order of an element from GF(p^k) respectively.
 • The G:-random command returns a random element from GF(p^k).
 • The G:-PrimitiveElement command generates a primitive element at random.
 • The G:-isPrimitiveElement command tests whether an element from GF(p^k) is a primitive element, being a generator for the multiplicative group GF(p^k) - {0}.
 • For backwards compatibility, exports of the module returned by the GF command can also be accessed by indexed notation, such as G[':-ConvertIn']. However, using the more modern form G:-ConvertIn, you do not need to quote the name to avoid evaluation.

Examples

 > $\mathrm{G16}≔\mathrm{GF}\left(2,4,{\mathrm{\alpha }}^{4}+\mathrm{\alpha }+1\right):$
 > $a≔\mathrm{G16}:-\mathrm{ConvertIn}\left(\mathrm{\alpha }\right)$
 ${a}{≔}{\mathrm{\alpha }}{\mathbf{mod}}{2}$ (1)
 > $\mathrm{G16}:-\mathrm{*}\left(a,a\right)$
 ${{\mathrm{\alpha }}}^{{2}}{\mathbf{mod}}{2}$ (2)
 > $\mathrm{G16}:-\mathrm{^}\left(a,4\right)$
 $\left({\mathrm{\alpha }}{+}{1}\right){\mathbf{mod}}{2}$ (3)
 > $x≔\mathrm{G16}:-\mathrm{^}\left(a,8\right)$
 ${x}{≔}\left({{\mathrm{\alpha }}}^{{2}}{+}{1}\right){\mathbf{mod}}{2}$ (4)
 > $\mathrm{G16}:-\mathrm{output}\left(x\right)$
 ${5}$ (5)
 > $\mathrm{G16}:-\mathrm{ConvertOut}\left(x\right)$
 ${{\mathrm{\alpha }}}^{{2}}{+}{1}$ (6)
 > $\mathrm{G16}:-\mathrm{isPrimitiveElement}\left(a\right)$
 ${\mathrm{true}}$ (7)
 > $x≔\mathrm{G16}:-\mathrm{^}\left(a,-1\right)$
 ${x}{≔}\left({{\mathrm{\alpha }}}^{{3}}{+}{1}\right){\mathbf{mod}}{2}$ (8)
 > $\mathrm{G16}:-\mathrm{*}\left(a,x\right)$
 ${1}{\mathbf{mod}}{2}$ (9)

The use statement, if used carefully, can make arithmetic operations in the field much more natural.

 > $\mathbf{use}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{G16}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{in}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}y≔a\left(a+x\right);\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}z≔a-y;\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{z}^{3}+{y}^{2}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end use}$
 ${y}{≔}\left({{\mathrm{\alpha }}}^{{2}}{+}{1}\right){\mathbf{mod}}{2}$
 ${z}{≔}\left({{\mathrm{\alpha }}}^{{2}}{+}{\mathrm{\alpha }}{+}{1}\right){\mathbf{mod}}{2}$
 $\left({\mathrm{\alpha }}{+}{1}\right){\mathbf{mod}}{2}$ (10)
 >