GradeSemiSimpleLieAlgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : GradeSemiSimpleLieAlgebra

LieAlgebras[GradeSemiSimpleLieAlgebra] - find the grading of a semi-simple Lie algebra defined by a set of simple roots or restricted simple roots

Calling Sequences

    GradeSemiSimpleLieAlgebra(Σ , T1)  

    GradeSemiSimpleLieAlgebra(Σ , T2, method = "non-compact")

Parameters

     Σ       - a list or set of column vectors, defining a subset of the simple roots or a subset of the restricted simple roots

   T1      - a table, with indices that include "RootSpaceDecomposition", "CartanSubalgebra", "SimpleRoots", "PositiveRoots"

     T2      - a table, with indices that include "RestrictedRootSpaceDecomposition", "CartanSubalgebra", "RestrictedSimpleRoots", "RestrictedPositiveRoots"

 

 

Description

Examples

See Also

Description

• 

Let g be a Lie algebra. A grading of g is a (vector space) direct sum decomposition g =  k ℤ𝔤k where 𝔤k , 𝔤l   𝔤k +l . Gradings of semi-simple Lie algebras can easily be constructed from the root space decomposition. Let h be a Cartan subalgebra and 𝔤 = 𝔥 α  ΔRα the associated root space decomposition Let Δ+ be a choice of positive roots and let Δ0  Δ+ be a set of simple roots. Every root α is a sum of simple roots, say α = Σi=1m ai αi , and one defines the height of the root α as htα = Σi=1m ai .

• 

Now let ΣΔ0 be a collection of simple roots and define the Σ height of α as ht Σα = Σi ai , where the sum is taken over those i such that αΣ . Then the subspaces

𝔤t  =α : htΣα =t Rα     and   𝔤0 = 𝔥 α : htΣα =0 Rα

define a (symmetric) grading g =t = k k 𝔤t. 

• 

For real Lie algebras, real gradings can be similarly constructed using the restricted root space decomposition.

• 

The command Query/"Gradation" will test if a given decomposition of a Lie algebra is graded.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We calculate the various gradations for sl4. We use the command SimpleLieAlgebraData to initialize the Lie algebra.

 

LDSimpleLieAlgebraDatasl(4),sl4,labelformat=gl,labels=E,ω:

DGsetupLD

Lie algebra: sl4

(2.1)
sl4 > 

PSimpleLieAlgebraPropertiessl4:

 

We use the command SimpleLieAlgebraProperties to create a table T containing the structure properties of sl4.

TSimpleLieAlgebraPropertiessl4:

sl4 > 

SRTSimpleRoots

 

Here are the possible subsets of the set of simple roots.

sl4 > 

Σ,SR1..1,SR2..2,SR3..3,SR1..2,SR2..3,SR1,SR3,SR

 

Here are the gradings defined by each subset of the simple roots.

sl4 > 

Σ1,GradeSemiSimpleLieAlgebraΣ1,P

,table0=E11,E22,E33,E12,E23,E34,E13,E24,E14,E21,E32,E43,E31,E42,E41

(2.2)
sl4 > 

Σ2,GradeSemiSimpleLieAlgebraΣ2,P

sl4 > 

Σ3,GradeSemiSimpleLieAlgebraΣ3,P

sl4 > 

Σ4,GradeSemiSimpleLieAlgebraΣ4,P

sl4 > 

Σ5,GradeSemiSimpleLieAlgebraΣ5,P

sl4 > 

Σ6,GradeSemiSimpleLieAlgebraΣ6,P

sl4 > 

Σ7,GradeSemiSimpleLieAlgebraΣ7,P

sl4 > 

Σ8,GradeSemiSimpleLieAlgebraΣ8,P

sl4 > 

Σ2,GradeSemiSimpleLieAlgebraΣ2,P

 

The Query command can be used to check that each of these define a grading of sl4.

sl4 > 

G7GradeSemiSimpleLieAlgebraΣ7,P

G7:=table0=E11,E22,E33,E23,E32,1=E12,E34,E13,E24,2=E14,2=E41,1=E21,E43,E31,E42

(2.3)
sl4 > 

QueryG7,Gradation

true

(2.4)

 

Example 2.

We calculate the various gradings for so5,3. We use the command SimpleLieAlgebraData to initialize the Lie algebra.

sl4 > 

LD2SimpleLieAlgebraDataso(5,3),so53,labelformat=gl,labels=R,θ:

sl4 > 

DGsetupLD2

Lie algebra: so53

(2.5)

We use the command SimpleLieAlgebraProperties to calculate the restricted root space decomposition, restricted simple roots, etc.

so53 > 

TSimpleLieAlgebraPropertiesso53:

so53 > 

RSRTRestrictedSimpleRoots

 

The subsets of the restricted simple roots are:

so53 > 

ΣRSR,RSR1..2,RSR2..3,RSR1,RSR3,RSR1..1,RSR2..2,RSR3..3,

 

Here are the possible gradings for so5,3.  

so53 > 

Σ1,GradeSemiSimpleLieAlgebraΣ1,T,method=non-compact

so53 > 

Σ2,GradeSemiSimpleLieAlgebraΣ2,T,method=non-compact

so53 > 

Σ3,GradeSemiSimpleLieAlgebraΣ3,T,method=non-compact

so53 > 

Σ4,GradeSemiSimpleLieAlgebraΣ4,T,method=non-compact

so53 > 

Σ5,GradeSemiSimpleLieAlgebraΣ5,T,method=non-compact

so53 > 

Σ6,GradeSemiSimpleLieAlgebraΣ6,T,method=non-compact

so53 > 

Σ7,GradeSemiSimpleLieAlgebraΣ7,T,method=non-compact

so53 > 

Σ8,GradeSemiSimpleLieAlgebraΣ8,T,method=non-compact

,table0=R78,R33,R22,R11,R16,R13,R17,R18,R26,R27,R28,R12,R23,R15,R37,R38,R43,R31,R47,R48,R53,R57,R58,R21,R32,R42,R67,R68

(2.6)

 

The Query command can be used to check that each of these define a grading of so5,3.

so53 > 

G1GradeSemiSimpleLieAlgebraΣ1,T,method=non-compact

G1:=table0=R78,R33,R22,R11,1=R12,R23,R37,R38,2=R13,R27,R28,3=R17,R18,R26,5=R15,4=R16,5=R42,4=R43,3=R47,R48,R53,2=R31,R57,R58,1=R21,R32,R67,R68

(2.7)
so53 > 

QueryG1,Gradation

true

(2.8)

 

See Also

DifferentialGeometry,  CartanSubalgebra, KillingForm, LieAlgebras, PositiveRoots, Query, SimpleRoots, RootSpaceDecomposition, RestrictedRootSpaceDecomposition,  SimpleLieAlgebraData, SimpleLieAlgebraProperties