ode_int_y - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


DEtools

  

ode_int_y

  

given the nth order linear ODE satisfied by y(x), compute the nth order linear ODE satisfied by int(y(x),x)

  

ode_y1

  

given the nth order linear ODE satisfied by y(x), compute the nth order linear ODE satisfied by diff(y(x),x)

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ode_int_y(ode, y(x))

ode_y1(ode, y(x))

Parameters

ode

-

ordinary differential equation satisfied by y(x)

y(x)

-

unknown function of one variable

Description

• 

Given a nth order linear ODE for yx, the ode_int_y and ode_y1 commands respectively compute the nth order linear ODE satisfied by yxⅆx and ⅆⅆxyx.

Examples

For enhanced input output use DEtools[diff_table] and PDEtools[declare].

withDEtools,diff_table,ode_int_y,ode_y1

diff_table,ode_int_y,ode_y1

(1)

PDEtoolsdeclareprime=x,yx,cx

derivatives with respect toxof functions of one variable will now be displayed with '

yxwill now be displayed asy

cxwill now be displayed asc

(2)

Ydiff_tableyx:

PDEtoolsdeclareyx,cx,prime=x

yxwill now be displayed asy

cxwill now be displayed asc

derivatives with respect toxof functions of one variable will now be displayed with '

(3)

Now, if y satisfies

c0xY+c1xYx+c2xYx,x+Yx,x,x,x=0

c0y+c1y'+c2y''+y''''=0

(4)

then the derivative of y satisfies

DEtoolsode_y1=0

y''''c0 'y'''c0+c2y''c0 'c2c1c0c2 'c0y'c0c0 'c1c02c1 'c0yc0=0

(5)

and so, the integral of the function y in the equation above satisfy this other ODE (the starting point)

DEtoolsode_int_y,yx=0

c0y+c1y'+c2y''+y''''=0

(6)

See Also

DEtools