 draw - Maple Help

geom3d

 draw
 create a three-dimensional plot of objects supported in the geom3d package Calling Sequence draw(obj,...) draw([obj_1,...,obj_n],...) Parameters

 obj - object to be plotted [obj_1, ..., obj_n] - list of object(s) to be plotted Description

 • The routine draw provides the graphical visualization of all objects supported in the geom3d package.
 • A typical call to the draw function is draw([ obj_1(localopts_1),...,obj_n(localopts_n) ], globalopts) where obj_1, ..., obj_n are geometric objects, localopts_1, ..., localopts_n are local options for a particular object, and globalopts are  options which apply to all of the objects.
 • localopts_i is a sequence of type equation. The set of options allowed for localopts_i is color, contours, grid, gridstyle, linestyle, numpoints, style, symbol, symbolsize, thickness, cutout, cutin, transparency. The contours, grid, numpoints, cutout and cutin options can only be provided as local options.
 • For detailed descriptions of the options, see plot3d/option.
 • globalopts: the set of options allowed for globalopts is the same as that for plot3d. Besides these options, two options cutin, cutout are added. See plottools[cutin] and plottools[cutout]. Also see plot/options for detailed descriptions of other options.
 • Note that the localopts_i that are defined for an object have precedence over globalopts when obj_i is drawn.
 • The command with(geom3d) allows the use of the short form of this command. Examples

 > $\mathrm{with}\left(\mathrm{geom3d}\right):$
 > $\mathrm{point}\left(o,0,0,0\right):$$r≔1.:$

Define small stellated dodecahedron $p$ with center o, radius r:

 > $\mathrm{SmallStellatedDodecahedron}\left(p,o,r\right):$

Find the reciprocal polyhedron $\mathrm{dp}$ of $p$ with respect to the sphere $s$

 > $\mathrm{duality}\left(\mathrm{dp},p,\mathrm{sphere}\left(s,\left[o,\mathrm{MidRadius}\left(p\right)\right]\right)\right):$
 > $\mathrm{draw}\left(\left[p\left(\mathrm{color}=\mathrm{red}\right),\mathrm{dp}\left(\mathrm{color}=\mathrm{green}\right)\right],\mathrm{cutout}=\frac{7}{8},\mathrm{lightmodel}=\mathrm{light4},\mathrm{title}=\mathrm{dual of small stellated dodecahedron},\mathrm{orientation}=\left[0,32\right]\right)$ The commands to create the plot from the Plotting Guide are

 > $\mathrm{icosahedron}\left(\mathrm{p1},\mathrm{point}\left(o,0,0,0\right),1\right)$
 ${\mathrm{p1}}$ (1)
 > $\mathrm{stellate}\left(\mathrm{p2},\mathrm{p1},4\right)$
 ${\mathrm{p2}}$ (2)
 > $p≔\mathrm{draw}\left(\mathrm{p2}\right):$
 > $q≔\mathrm{plottools}\left[\mathrm{homothety}\right]\left(p,3\right):$
 > $\mathrm{plots}\left[\mathrm{display}\right]\left(\left[p,q\right],\mathrm{scaling}=\mathrm{constrained},\mathrm{orientation}=\left[30,95\right]\right)$ 