 InverseComplexCepstrum - Maple Help

SignalProcessing

 InverseComplexCepstrum
 compute the inverse complex cepstrum of the signal Calling Sequence InverseComplexCepstrum(A, nd) Parameters

 A - Array of real numeric values; the signal nd - integer the number of samples of delay Description

 • The InverseComplexCepstrum(A) command computes the inverse complex cepstrum of the real data A.
 • nd is the number of samples of delay and the second output of ComplexCepstrum.
 • A must be a one-dimensional Array and must contain real numbers only. Examples

 > $\mathrm{with}\left(\mathrm{SignalProcessing}\right):$
 > $\mathrm{f1}≔12.0:$
 > $\mathrm{f2}≔20.0:$
 > $\mathrm{Fs}≔1000:$
 > $\mathrm{signal}≔\mathrm{Vector}\left({2}^{10},i→\mathrm{sin}\left(\frac{\mathrm{f1}\cdot 2\mathrm{Pi}i}{\mathrm{Fs}}\right)+1.5\mathrm{sin}\left(\frac{\mathrm{f2}\cdot 2\mathrm{Pi}i}{\mathrm{Fs}}\right),'\mathrm{datatype}'='{\mathrm{float}}_{8}'\right):$
 > $t≔\mathrm{Vector}\left({2}^{10},i→\frac{1.0i}{\mathrm{Fs}},'\mathrm{datatype}'='{\mathrm{float}}_{8}'\right):$
 > $\mathrm{plot}\left(t,\mathrm{signal}\right)$ > $c,\mathrm{nd}≔\mathrm{ComplexCepstrum}\left(\mathrm{signal}\right)$ > $\mathrm{ic}≔\mathrm{InverseComplexCepstrum}\left(c,\mathrm{nd}\right)$ > $\mathrm{plot}\left(t,\mathrm{ic}\right)$  Compatibility

 • The SignalProcessing[InverseComplexCepstrum] command was introduced in Maple 2019.