PolynomialTools/RootPowerSum - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : PolynomialTools/RootPowerSum

PolynomialTools

  

RootPowerSum

  

compute the sum of a give power of the roots of a polynomial

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

RootPowerSum( p, x, n )

Parameters

p

-

: polynom : a polynomial in x

x

-

: name : the indeterminate

n

-

: nonnegint : the power of the roots of p

Description

• 

The RootPowerSum( p, x, n ) command computes the sum of the n-th powers of the roots of the polynomial p in the indeterminate x.

• 

Note that RootPowerSum( p, x, 0 ) is the same as the degree of p in x; RootPowerSum( p, x, 1 ) is the sum of the roots of p (as a polynomial in x); RootPowerSum( p, x, 2 ) is the sum of the squares of the roots of p; and so on.

Examples

withPolynomialTools:

px32x25x+3

px32x25x+3

(1)

RootPowerSump,x,0

3

(2)

RootPowerSump,x,1

2

(3)

RootPowerSump,x,2

14

(4)

pexpandx2x12

px34x2+5x2

(5)

RootPowerSump,x,0

3

(6)

RootPowerSump,x,1

4

(7)

RootPowerSump,x,2

6

(8)

RootPowerSump,x,3

10

(9)

RootPowerSump,x,4

18

(10)

px4yy2x+xy4

px4yy2x+xy4

(11)

RootPowerSump,x,0

4

(12)

RootPowerSump,y,0

2

(13)

RootPowerSump,x,3

3y3

(14)

RootPowerSump,y,2

x7+2x4+x8x

(15)

A generic cubic polynomial expressed as a product of linear factors.

pexpandxrxsxt

prst+rsx+rtxrx2+stxsx2tx2+x3

(16)

RootPowerSump,x,1

r+s+t

(17)

RootPowerSump,x,2

r2+s2+t2

(18)

RootPowerSump,x,30

r30+s30+t30

(19)

Consider a general quadratic polynomial in x.

pax2+bx+c

pax2+bx+c

(20)

ddiscrimp,x

d4ac+b2

(21)

The quadratic formula gives us the following roots for p.

ub+sqrtd2a

ub+4ac+b22a

(22)

vbsqrtd2a

vb4ac+b22a

(23)

RootPowerSump,x,1=normalu+v

ba=ba

(24)

RootPowerSump,x,2=normalu2+v2

2acb2a2=2acb2a2

(25)

RootPowerSump,x,3=normalu3+v3

b3acb2a3=b3acb2a3

(26)

As a polynomial in x, this polynomial has roots y, 2z and yz.

pexpandxyx2zxyz

px2yz+xy2z+2xyz22y2z2+x3x2y2x2z+2xyz

(27)

RootPowerSump,x,0

3

(28)

RootPowerSump,x,1

yz+y+2z

(29)

RootPowerSump,x,2

y2z2+y2+4z2

(30)

RootPowerSummulxri,i=1..12,x,10

r110+r1010+r1110+r1210+r210+r310+r410+r510+r610+r710+r810+r910

(31)

pexpandxsqrt2xsqrt3xsqrt7

px3x27x23+x372x2+2x7+23x237

(32)

RootPowerSump,x,1

7+3+2

(33)

RootPowerSump,x,2

12

(34)

RootPowerSump,x,20

282535322

(35)

pexpandxsqrt2xsin1xexpt

px3x2ⅇtx2sin1+xsin1ⅇt2x2+2xⅇt+2sin1x2sin1ⅇt

(36)

RootPowerSump,x,1

ⅇt+sin1+2

(37)

RootPowerSump,x,4

ⅇt4+sin14+4

(38)

Compatibility

• 

The PolynomialTools[RootPowerSum] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

PolynomialTools