 Error, (in int) wrong number (or type) of arguments: wrong type of integrand passed to indefinite integration. - Maple Help

Home : Support : Online Help : Error, (in int) wrong number (or type) of arguments: wrong type of integrand passed to indefinite integration.

Error, (in int) wrong number (or type) of arguments: wrong type of integrand passed to indefinite integration Description The first argument to int for indefinite integration must be of type algebraic. In other words, it must be an expression and cannot be any of the following: an operator, procedure, equation, set, list, Array, or table. Examples

Example 1

The command int cannot take an equation as the first argument.

 > $\mathrm{int}\left(x=1,x\right)$

Solution:

 > $\mathrm{int}\left(1,x\right)$
 ${x}$ (2.1)

Example 2

In this example, the functional operator passed as the first argument will cause an error.

 > $\mathrm{int}\left(x\to {x}^{2},x\right)$

Solution 1:

Use the expression ${x}^{2}$ for the first argument instead.

 > $\mathrm{int}\left({x}^{2},x\right)$
 $\frac{{{x}}^{{3}}}{{3}}$ (2.2)

Solution 2:

Instead, define the function $f$, then use $f\left(x\right)$ as the first argument.

 > $f≔x\to {x}^{2}$
 ${f}{≔}{x}{↦}{{x}}^{{2}}$ (2.3)
 > $\mathrm{int}\left(f\left(x\right),x\right)$
 $\frac{{{x}}^{{3}}}{{3}}$ (2.4)

Example 3

The same error can occur when using the 2-D math integral notation:

 > $∫\left(x\to {x}^{2}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}ⅆx$

Solution:

As in the previous example, you can either use an expression or define the function $f$, then use $f\left(x\right)$ as the first argument.

 > $f≔x\to {x}^{2}$
 ${f}{≔}{x}{↦}{{x}}^{{2}}$ (2.5)
 > $∫f\left(x\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}ⅆx$
 $\frac{{{x}}^{{3}}}{{3}}$ (2.6)