CartanInvolution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[CartanInvolution] - find a Cartan involution for a non-compact, semi-simple, real Lie algebra

Calling Sequences

     CartanInvolution(T,P)

     CartanInvolution( CSA,RSD,PosRts)

Parameters

     T       - a list of vectors in a Lie algebra, defining a subalgebra on which the Killing form is negative-definite.

      P       - a list of vectors in a Lie algebra, defining a subspace on which the Killing form is positive-definite.

      CSA     - a list of vectors, defining a Cartan subalgebra of a Lie algebra

     RSD     - a table, specifying the root space decomposition of the Lie algebra with respect to the Cartan subalgebra CSA

     PosRts  - a list of Vectors, specifying a choice of positive roots for the root space decomposition

     

 

Description

 Examples

Description

• 

Let g be a semi-simple, real Lie algebra. Then g is called compact if the Killing form  ,of g is negative-definite, otherwise g is called non-compact.

• 

A Cartan involution of g is a Lie algebra automorphism Θ : gg with Θ2= Id and such that the symmetric bilinear form BΘx,y = x,Θy is positive-definite.

• 

The command CartanInvolution returns a transformation defining a Cartan involution.

• 

A Cartan decomposition is a vector space decomposition g = tp , where t is a subalgebra, p a subspace, [t, p] ⊆ p , [p, p] ⊆ t and the Killing form is negative-definite on t and positive-definite on p.

• 

Given a Cartan decomposition, the linear transformation which is the identity Id on t and Id on p is a Cartan involution. This is the involution computed by the first calling sequence for the command CartanInvolution.

• 

We remark that, conversely, given a Cartan involution Θ, the +1, -1 eigenspaces E1 = 𝔭 and E1= 𝔱 yield a Cartan decomposition. Also, any two Cartan involutions Θ1 and Θ2 on g are related by an inner automorphism φ : 𝔤  𝔤, that is, Θ2= φ Θ1φ1 .

• 

 A Cartan involution can also be calculated from a Cartan subalgebra, the associated root space decomposition and a choice of positive roots. The algorithm can be summarized as follows. First use the procedure Complexify to define the complexification 𝔤C of the Lie algebra 𝔤. This is a real semi-simple Lie algebra of twice the dimension of 𝔤 . Let σ : 𝔤C 𝔤C denote the standard conjugation map. Next use the command SplitAndCompactForms to find a complex basis of 𝔤 which defines a compact form 𝔲 of 𝔤. Identify 𝔲 with a subalgebra of 𝔤C and let τ be the corresponding conjugate map. One proves that τ is a Cartan involution of 𝔤C . If τ restricts to a mapping τ: 𝔤 𝔤, then τ would be the required Cartan involution for 𝔤. However, this generally is not the case so the idea to conjugate τ to another Cartan involution which does restrict to 𝔤. Note that the requirement that τ restricts to a mapping τ: 𝔤 𝔤  is equivalent to the requirement that τ commutes with σ. One proves that ψ = σ τ σ τ is a linear transformation with positive eigenvalues. The required Cartan involution is then Θ=ψ1/4τ ψ1/4. See A.Cap and J. Slovak, Parabolic Geometries I - Background and General Theory, page 203 for further details.

 Examples

with(DifferentialGeometry): with(LieAlgebras):

 

Example 1.

We find a Cartan involution for so3,2, the Lie algebra of 5×5 matrices which are skew-symmetric with respect to the quadratic form 0I20I200001 .

LD := SimpleLieAlgebraData("so(3, 2)", so32, labelformat = "gl", labels = ['E', 'omega']):

DGsetup(LD);

Lie algebra: so32

(2.1)

 

The explicit matrices defining so3, 2 are

so32 > 

M := StandardRepresentation(so32);

 

From these matrices we calculate a Cartan decomposition

so32 > 

T, P := CartanDecomposition(M, so32);

T,P:=E12E21,E14+E32,E15+E35,E25+E45,E11,E12+E21,E22,E14E32,E15E35,E25E45

(2.2)

 

and from this a Cartan involution Θ1

so32 > 

Theta1 := CartanInvolution(T, P);

Θ1:=E11,E11,E12,E21,E21,E12,E22,E22,E14,E32,E32,E14,E15,E35,E25,E45,E35,E15,E45,E25

(2.3)

 

We check that  Θ1satisfies all the properties of a Cartan involution.

1. Θ12 = Id.

so32 > 

ComposeTransformations(Theta1, Theta1);

E11,E11,E12,E12,E21,E21,E22,E22,E14,E14,E32,E32,E15,E15,E25,E25,E35,E35,E45,E45

(2.4)

 

2. Θ1  is a Lie algebra homomorphism.

so32 > 

Query(Theta1, "Homomorphism");

true

(2.5)

 

3. The bilinear form Bx,y= x, Θ1y is positive-definite.

so32 > 

V := Tools:-DGinfo(so32, "FrameBaseVectors");

V:=E11,E12,E21,E22,E14,E32,E15,E25,E35,E45

(2.6)
so32 > 

B := Matrix(10, 10, (i,j) -> Killing(-V[i], ApplyHomomorphism(Theta1, V[j])));

 

All of these properties are checked with the command Query/"CartanInvolution"

so32 > 

Query(Theta1, "CartanInvolution");

true

(2.7)

 

Example 2.

We calculate the Cartan involution for so3,2 using the second calling sequence. For this we need a Cartan subalgebra, the corresponding root space decomposition and a choice of positive roots.

 

CSA := CartanSubalgebra();

CSA:=E11,E22

(2.8)
so32 > 

RSD := RootSpaceDecomposition(CSA);

RSD:=table1,0=E35,0,1=E45,1,1=E32,1,1=E14,1,1=E21,1,1=E12,1,0=E15,0,1=E25

(2.9)
so32 > 

PosRts := PositiveRoots(RSD);

 

Here is the Cartan involution obtained from this Cartan subalgebra.

so32 > 

Theta2 := CartanInvolution(CSA, RSD, PosRts);

Θ2:=E11,E11,E12,E21,E21,E12,E22,E22,E14,14E32,E32,4E14,E15,12E35,E25,12E45,E35,2E15,E45,2E25

(2.10)
so32 > 

Query(Theta2, "CartanInvolution");

true

(2.11)

 

It differs slightly from the one calculated using the first calling sequence in Example 1.

so32 > 

Theta1;

E11,E11,E12,E21,E21,E12,E22,E22,E14,E32,E32,E14,E15,E35,E25,E45,E35,E15,E45,E25

(2.12)

 

 

 

 

Example 3.

We check, by example, that if φ is an inner automorphism, then  φ Θ1φ1 is also a Cartan involution.

 

We use the exponential of adE35 to define φ .

so32 > 

A := AdjointExp(evalDG(2*E35));

so32 > 

phi := Transformation(so32, so32, A);

φ:=E11,E11+2E35,E12,E12+2E32+2E45,E21,E21,E22,E22,E14,2E21+E142E25,E32,E32,E15,2E11+E15+2E35,E25,2E21+E25,E35,E35,E45,2E32+E45

(2.13)

 

Here is the new Cartan involution.

so32 > 

newTheta := ComposeTransformations(phi, Theta1, InverseTransformation(phi));

newTheta:=E11,5E112E156E35,E12,9E21+2E146E25,E21,E122E322E45,E22,E22,E14,2E12+9E32+6E45,E32,2E21+E142E25,E15,6E11+2E15+9E35,E25,2E12+6E32+5E45,E35,2E11+E15+2E35,E45,6E212E14+5E25

(2.14)

 

Check that it works.

so32 > 

Query(newTheta, "CartanInvolution");

true

(2.15)

See Also

Adjoint

CartanSubalgebra

CartanDecomposition

ComposeTransformations

DifferentialGeometry

InverseTransformation

Killing

LieAlgebras

Transformation

PositiveRoots

Query

RootSpaceDecomposition

StandardRepresentation

SimpleLieAlgebraData