IsotropyFiltration - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupActions[IsotropyFiltration] - find the infinitesimal isotropy filtration for a Lie algebra of vector fields

Calling Sequences

     IsotropyFiltration(Gamma, pt, option)

Parameters

  Gamma     - a list of vector fields on a manifold M

  pt        - a list of equations x1 = p1, x2 = p2, ... specifying the coordinates of point p  M

  option    - the optional argument output = O, where O is a list containing the keywords "Vector" and/or the name of an initialized abstract algebra for the Lie algebra of vector fields Gamma.

  

 

Description

Examples

Description

• 

Let Γ be a Lie algebra of vector fields on a manifold M  and letp M. The isotropy filtration of  the  Lie algebra of vector fields Γ is the decreasing nested sequence of subalgebras   ΓpkΓp1 Γp0  Γ defined by

 Γpk = { X Γ | the coefficients of X and their derivatives all vanish to order k at p }.

Note that if X  Γpk and Y  Γpℓ , then X, Y  Γpk+ℓ.  The subalgebra Γp0 is called the isotropy subalgebra of Γ at p.

• 

 The command IsotropyFiltration(Gamma, pt) returns a list of list of vector fields, the first list gives a basis for Γp0, the second list gives a basis for Γp1 and so on.

• 

The command IsotropyFiltration is part of the DifferentialGeometry:-GroupActions package.  It can be used in the form IsotropyFiltration(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-IsotropyFiltration(...).

Examples

withDifferentialGeometry:withGroupActions:withLibrary:withLieAlgebras:

 

Example 1.

First we obtain a Lie algebra of vector fields from the paper by Gonzalez-Lopez, Kamran, Olver in the DifferentialGeometry Library using the Retrieve command and then we compute the isotropy filtration.

DGsetupx,y,M

frame name: M

(2.1)
M > 

GammaRetrieveGonzalez-Lopez,1,27,4,manifold=M

Γ:=D_x,2xD_x+4yD_y,x2D_x+4xyD_y,D_y,xD_y,x2D_y,x3D_y,x4D_y

(2.2)

 

We calculate the isotropy filtration as a subalgebra of Γ.

M > 

F1IsotropyFiltrationGamma,x=0,y=0

F12xD_x+4yD_y,x2D_x+4xyD_y,xD_y,x2D_y,x3D_y,x4D_y,x2D_x+4xyD_y,x2D_y,x3D_y,x4D_y,x3D_y,x4D_y,x4D_y,

(2.3)

 

Example 2.

We continue with Example 1. Here we calculate the isotropy filtration as a subalgebra of the abstract Lie algebra defined by Γ. To this end, we first calculate the structure constants for Γand initialize the result as Alg1.

M > 

LLieAlgebraDataGamma,Alg1

L:=e1,e2=2e1,e1,e3=e2,e1,e5=e4,e1,e6=2e5,e1,e7=3e6,e1,e8=4e7,e2,e3=2e3,e2,e4=4e4,e2,e5=2e5,e2,e7=2e7,e2,e8=4e8,e3,e4=4e5,e3,e5=3e6,e3,e6=2e7,e3,e7=e8

(2.4)
M > 

DGsetupL:

 

Now re-run the IsotropyFiltration command with the third argument output = [Alg1].

Alg1 > 

FIsotropyFiltrationGamma,x=0,y=0,output=Alg1

F:=e2,e3,e5,e6,e7,e8,e3,e6,e7,e8,e7,e8,e8,

(2.5)

 

We check that F does indeed define a filtration of the Lie algebra Γ (note that there is an index shift  Γpk = F[k+1]).

Alg1 > 

BracketOfSubspacesF1,F1

2e3,2e5,2e7,4e8,3e6

(2.6)
Alg1 > 

BracketOfSubspacesF1,F2

2e3,2e7,4e8,3e6

(2.7)
Alg1 > 

BracketOfSubspacesF1,F3

2e7,4e8

(2.8)
Alg1 > 

BracketOfSubspacesF1,F4

4e8

(2.9)
Alg1 > 

BracketOfSubspacesF2,F3

e8

(2.10)
Alg1 > 

BracketOfSubspacesF2,F4

(2.11)

 

All these brackets can be checked at once with Query/"filtration".

Alg1 > 

QueryF,Filtration

true

(2.12)

See Also

DifferentialGeometry

GroupActions

Library

LieAlgebras

BracketOfSubspaces

IsotropySubalgebra,

LieAlgebraData

Query