changecoords - Maple Help

Home : Support : Online Help : Graphics : Packages : plots : changecoords

plots

 changecoords
 plotting coordinate changes

 Calling Sequence changecoords(p, coord)

Parameters

 p - plot data structure coord - new coordinate system

Description

 • The changecoords function transforms a plot structure to one that uses a new coordinate system.
 • The input p must be a two or three dimensional plot data structure, while coord must be one of the accepted set of coordinate types available. At present these include:
 In three dimensions - bipolarcylindrical, bispherical, cardioidal, cardioidcylindrical, casscylindrical, confocalellip, confocalparab, conical, cylindrical, ellcylindrical, ellipsoidal, hypercylindrical, invcasscylindrical, invellcylindrical, invoblspheroidal, invprospheroidal, logcoshcylindrical, logcylindrical, maxwellcylindrical, oblatespheroidal, paraboloidal, paraboloidal2, paracylindrical, prolatespheroidal, rosecylindrical, sixsphere, spherical, spherical_math, spherical_phsycis, tangentcylindrical, tangentsphere, and toroidal.
 In two dimensions - bipolar, cardioid, cassinian, elliptic, hyperbolic, invcassinian, invelliptic, logarithmic, logcosh, maxwell, parabolic, polar, rose, and tangent.
 • The conversions from the various coordinate systems to Cartesian coordinates can be found in the coords help page.
 • The result of a call to changecoords is a PLOT or PLOT3D data structure containing information to render the plot. You can assign the data structure to a variable, save it in a file, then read it back in for redisplay.  For more information about plot data structures, see plot/structure.
 • There are other functions available to transform plot data structures. A number of these are in the plottools package and are listed on the plottools help page.  The plots[display] function can also be used to transform plots.
 • The command with(plots,changecoords) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{plots}\right):$
 > $p≔\mathrm{plot}\left(\left[\mathrm{sin}\left(x\right),x,x=0..2\mathrm{Pi}\right]\right):$
 > $\mathrm{changecoords}\left(p,\mathrm{polar}\right)$
 > $p≔\mathrm{plot3d}\left(\left[{1.3}^{x}\mathrm{sin}\left(y\right),x,y\right],x=-1..2\mathrm{Pi},y=0..\mathrm{Pi}\right):$
 > $\mathrm{changecoords}\left(p,\mathrm{spherical}\right)$
 > $\mathrm{changecoords}\left(p,\mathrm{paraboloidal}\right)$
 > $\mathrm{changecoords}\left(p,\mathrm{conical}\left(2,3\right)\right)$
 > $p≔\mathrm{plot3d}\left(\left[x+y,x,y\right],x=-\mathrm{Pi}..\mathrm{Pi},y=-\mathrm{Pi}..\mathrm{Pi}\right):$
 > $\mathrm{changecoords}\left(p,\mathrm{bipolarcylindrical}\right)$
 > $\mathrm{changecoords}\left(p,\mathrm{bipolarcylindrical}\left(3\right)\right)$