NumSimpleGroups - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : NumSimpleGroups

GroupTheory

  

NumSimpleGroups

  

return the number of simple groups of a given finite order

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

NumSimpleGroups( n )

Parameters

n

-

a positive integer; usually, the order of a finite simple group

Description

• 

For a positive integer n, the NumSimpleGroups( n ) command returns the number of simple groups of order n.

• 

For each prime integer n, the number of simple groups of order n is equal to 1. By the Feit-Thompson Theorem, if n is an odd composite integer, there are no simple groups of order n. The Artin-Tits theorem asserts that the number of simple groups of any given finite order is at most equal to 2. Therefore, the value returned by NumSimpleGroups( n ), for any positive integer n, is one of 0, 1 or 2.

Examples

withGroupTheory:

NumSimpleGroups1

0

(1)

NumSimpleGroups13

1

(2)

NumSimpleGroups15

0

(3)

NumSimpleGroups360

1

(4)

NumSimpleGroups20160

2

(5)

Compatibility

• 

The GroupTheory[NumSimpleGroups] command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

GroupTheory[ClassifyFiniteSimpleGroup]

GroupTheory[IsSimple]

GroupTheory[IsSimpleNumber]