Source with signal magnetic potential difference

 Description The QuasiStatic Stray Load component models the effect of current-dependent torque losses. Stray load losses are modeled similar to standards EN 60034-2 and IEEE 512, i.e., they are dependent on square of current, but without scaling them to zero at no-load current. The stray load losses are modeled such way that they do not cause a voltage drop in the electric circuit; instead, the losses are dissipated through a braking torque at the shaft.
 Equations $\mathrm{\tau }={\mathrm{\tau }}_{\mathrm{support}}=-{\mathrm{\tau }}_{\mathrm{flange}}=-\left(\frac{{P}_{\mathrm{ref}}}{{w}_{\mathrm{ref}}}\right){\left(\frac{{i}_{\mathrm{RMS}}}{{I}_{\mathrm{ref}}}\right)}^{2}\left\{\begin{array}{cc}0& {P}_{\mathrm{ref}}\le 0\\ \mathrm{sgn}\left(w\right){\left(\frac{\left|w\right|}{{w}_{\mathrm{ref}}}\right)}^{{P}_{w}}\phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}& \mathrm{otherwise}\end{array}$ $w=\frac{d\mathrm{\phi }}{\mathrm{dt}}$ $\mathrm{\phi }={\mathrm{\phi }}_{\mathrm{flange}}-{\mathrm{\phi }}_{\mathrm{support}}$ $i={i}_{p}=-{i}_{n}$ $v={v}_{p}-{v}_{n}$ $\mathrm{lossPower}=-\mathrm{\tau }w$ $\mathrm{\omega }=\frac{d{\mathrm{\gamma }}_{p}}{\mathrm{dt}}$ ${\mathrm{\gamma }}_{p}=\mathrm{\gamma }+{\mathrm{\gamma }}_{n}$

Connections

 Name Description Modelica ID ${\mathrm{plug}}_{p}$ Positive quasistationary multiphase plug plug_p ${\mathrm{plug}}_{n}$ Negative quasistationary multiphase plug plug_n $\mathrm{flange}$ Rotational shaft end flange $\mathrm{support}$ Housing and support support $\mathrm{heatPort}$ Conditional heat port heatPort

Parameters

 Name Default Units Description Modelica ID $m$ $3$ Number of phases m Use Heat Port $\mathrm{false}$ True (checked) means enable heat port useHeatPort

 Name Default Units Description Modelica ID ${P}_{\mathrm{ref}}$ $1$ $W$ Reference power loss PRef ${I}_{\mathrm{ref}}$ $1$ $A$ Reference current IRef ${w}_{\mathrm{ref}}$ $1$ $\frac{\mathrm{rad}}{s}$ Reference angular velocity wRef ${P}_{w}$ $1$ $1$ Exponent of angular velocity power_w