Quasistationary Multiphase Voltage Source

Constant multiphase AC voltage

 Description The Quasistationary Multiphase Voltage Source (or Voltage Source) component contains $m$ quasistationary single-phase voltage source models, each connected between corresponding phases of ${\mathrm{plug}}_{p}$ and ${\mathrm{plug}}_{n}$, with the voltages set by the vector parameter $V$ and $\mathrm{\phi }$.
 Equations $i={i}_{p}=-{i}_{n}$ $v={v}_{p}-{v}_{n}=V$ $\mathrm{\omega }=2\mathrm{\pi }f$ $\mathrm{\gamma }={\mathrm{\gamma }}_{p}={\mathrm{\gamma }}_{n}$

Connections

 Name Description Modelica ID ${\mathrm{plug}}_{p}$ Positive quasistationary multiphase plug plug_p ${\mathrm{plug}}_{n}$ Negative quasistationary multiphase plug plug_n

Parameters

 Name Default Type Units Description Modelica ID $m$ $3$ Integer Number of phases m $f$ 1 Real $\mathrm{Hz}$ Frequency of the sources f $V$ _fill(1,m)) Real[m] $V$ RMS voltages of the sources V $\mathrm{\phi }$ [1] Real[m] $\mathrm{rad}$ Phase shifts of the sources phi

[1] The default value of $\mathrm{\phi }$ is $-\mathrm{Modelica.Electrical.MultiPhase.Functions.symmetricOrientation}\left(m\right)$, which evaluates to a an $m$-vector.

For $m$ odd, this is $\left[0,-2\frac{\mathrm{\pi }}{m},-4\frac{\mathrm{\pi }}{m},\dots ,-2\left(m-1\right)\frac{\mathrm{\pi }}{m}\right]$.

For $m$ even, this is $\left[0,-4\frac{\mathrm{\pi }}{m},-8\frac{\mathrm{\pi }}{m},\dots ,-\left(2m-4\right)\frac{\mathrm{\pi }}{m},\frac{\mathrm{\pi }}{m},-3\frac{\mathrm{\pi }}{m},-7\frac{\mathrm{\pi }}{m},\dots ,-\left(2m-5\right)\frac{\mathrm{\pi }}{m}\right]$.

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.