Stepper Variable Reluctance - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Stepper Variable Reluctance

Variable reluctance stepper motor

 Description The Stepper Variable Reluctance Motor (or Stepper Motor VR) component models a two-phase variable reluctance stepper machine. The winding resistances and inductances of the two phase windings are identical. The losses in the winding resistances only are taken into account; saturation is not modeled.
 Equations $\mathrm{\theta }={\mathrm{\phi }}_{\mathrm{rflange}}$ $\mathrm{\tau }={\mathrm{\tau }}_{\mathrm{rflange}}$ $\mathrm{\omega }=\stackrel{.}{\mathrm{\theta }}$ ${i}_{a}={i}_{{\mathrm{pos}}_{1}}=-{i}_{{\mathrm{neg}}_{1}}\phantom{\rule[-0.0ex]{1.5ex}{0.0ex}}{i}_{b}={i}_{{\mathrm{pos}}_{2}}=-{i}_{{\mathrm{neg}}_{2}}\phantom{\rule[-0.0ex]{1.5ex}{0.0ex}}{i}_{c}={i}_{{\mathrm{pos}}_{3}}=-{i}_{{\mathrm{neg}}_{3}}$ ${v}_{{a}_{p}}={v}_{{\mathrm{pos}}_{1}}\phantom{\rule[-0.0ex]{1.0ex}{0.0ex}}{v}_{{a}_{n}}={v}_{{\mathrm{neg}}_{1}}\phantom{\rule[-0.0ex]{1.0ex}{0.0ex}}{v}_{{b}_{p}}={v}_{{\mathrm{pos}}_{2}}\phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}{v}_{{b}_{n}}={v}_{{\mathrm{neg}}_{2}}\phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}{v}_{{c}_{p}}={v}_{{\mathrm{pos}}_{3}}\phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}{v}_{{c}_{n}}={v}_{{\mathrm{neg}}_{3}}$ $J\stackrel{.}{\mathrm{\omega }}+B\mathrm{\omega }=\frac{-1}{2}{i}_{a}^{2}\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{sin}\left({N}_{r}\mathrm{\theta }\right){N}_{r}+\frac{1}{2}{i}_{b}^{2}\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{sin}\left({N}_{r}\mathrm{\theta }+\frac{1}{3}\mathrm{\pi }\right){N}_{r}-\frac{1}{2}{i}_{c}^{2}\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{cos}\left({N}_{r}\mathrm{\theta }+\frac{1}{6}\mathrm{\pi }\right){N}_{r}-\mathrm{\tau }$ $\left(\frac{1}{2}{L}_{\mathrm{max}}+\frac{1}{2}{L}_{\mathrm{min}}+\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{cos}\left({N}_{r}\mathrm{\theta }\right)\right){\stackrel{.}{i}}_{a}+R{i}_{a}={v}_{{a}_{p}}-{v}_{{a}_{n}}+{i}_{a}\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{sin}\left({N}_{r}\mathrm{\theta }\right){N}_{r}\stackrel{.}{\mathrm{\theta }}$ $\left(\frac{1}{2}{L}_{\mathrm{max}}+\frac{1}{2}{L}_{\mathrm{min}}-\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{cos}\left({N}_{r}\mathrm{\theta }+\frac{1}{3}\mathrm{\pi }\right)\right){\stackrel{.}{i}}_{b}+R{i}_{b}={v}_{{b}_{p}}-{v}_{{b}_{n}}-{i}_{b}\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{sin}\left({N}_{r}\mathrm{\theta }+\frac{1}{3}\mathrm{\pi }\right){N}_{r}\stackrel{.}{\mathrm{\theta }}$ $\left(\frac{1}{2}{L}_{\mathrm{max}}+\frac{1}{2}{L}_{\mathrm{min}}-\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{sin}\left({N}_{r}\mathrm{\theta }+\frac{1}{6}\mathrm{\pi }\right)\right){\stackrel{.}{i}}_{c}+R{i}_{c}={v}_{{c}_{p}}-{v}_{{c}_{n}}+{i}_{c}\left(\frac{1}{2}{L}_{\mathrm{max}}-\frac{1}{2}{L}_{\mathrm{min}}\right)\mathrm{cos}\left({N}_{r}\mathrm{\theta }+\frac{1}{6}\mathrm{\pi }\right){N}_{r}\stackrel{.}{\mathrm{\theta }}$

Connections

 Name Description Modelica ID ${\mathrm{plug}}_{\mathrm{neg}}$ Negative pin plug_neg ${\mathrm{plug}}_{\mathrm{pos}}$ Positive pin winding a plug_pos $\mathrm{rflange}$ Shaft end rflange

Parameters

 Name Default Units Description Modelica ID $J$ $0.005$ $\mathrm{kg}{m}^{2}$ Rotor moment of inertia J $B$ $0.008$ $\frac{Nms}{\mathrm{rad}}$ Rotor damping B $R$ $1$ $\mathrm{\Omega }$ Winding resistance R ${L}_{\mathrm{max}}$ $0.007$ $H$ Maximum winding inductance Lmax ${L}_{\mathrm{min}}$ $0.002$ $H$ Minimum winding inductance Lmin ${N}_{r}$ $20$ $1$ Number of rotor teeth Nr