Pump

Pump to produce the water flow

 Description The Pump component models is used to produce the water flow for the lumped thermal fluid simulation of Water. This component calculates mainly the mass flow rate.

Equations

The calculation is changed based on parameter values of Dynamics of mass in the Water Settings component.

The head and pressure difference are calculated with:

$h\mathrm{ead}=\mathrm{min}{\left(\frac{w}{\mathrm{w__max}},1.0\right)}^{2}\cdot \mathrm{MapleSim.Interpolate1D}\left(\mathrm{data},\frac{\mathrm{Q_target}}{\mathrm{min}\left(\frac{w}{\mathrm{w__max}},1.0\right)}\right)$

(*) $\mathrm{MapleSim.Interpolate1D}$ is the function of Lookup table of 1D.

(*) data is specified with:

- If data_source = inline, parameter H-Q curve.

- If data_source = attachment, an attached file (.csv and .xls, .xlsx) is used

- If data_source = file, need to specify the path of file (.csv and .xls, .xlsx).

 Dynamics of mass = Static Volume flow rate is calculated with: $\mathrm{Q__target}=Q$ Port's mass flow rate is defined with: $\mathrm{port_b.mflow}=-\mathrm{mflow}$
 Dynamics of mass = Dynamic Volume flow rate is calculated with: $\frac{ⅆQ}{ⅆt}=\frac{\left(\mathrm{max}\left(\mathrm{Q__target},0.0\right)-Q\right)}{\mathrm{T__const}}$ $\mathrm{mflow}=\mathrm{inStream}\left(\mathrm{port_a.rho}\right)\cdot Q;$ Port's mass flow rate is defined with: $\mathrm{port_a.mflow}=\mathrm{mflow}\mathrm{ port_b.mflow}=-\mathrm{mflow}$

Common definitions are the following:

$\mathrm{dp}=-\mathrm{port_a.p}+\mathrm{port_b.p}$

$v=\frac{Q}{A}$

$\mathrm{port_a.mflow}=\mathrm{mflow}$

$\mathrm{port_b.mflow}=-\mathrm{mflow}$

$\mathrm{port_a.hflow}=\mathrm{inStream}\left(\mathrm{port_b.hflow}\right)$

$\mathrm{port_b.hflow}=\mathrm{inStream}\left(\mathrm{port_a.hflow}\right)$

$\mathrm{port_a.rho}=\mathrm{inStream}\left(\mathrm{port_b.rho}\right)$

$\mathrm{port_b.rho}=\mathrm{inStream}\left(\mathrm{port_a.rho}\right)$

$\mathrm{port_a.T}=\mathrm{inStream}\left(\mathrm{port_b.T}\right)$

$\mathrm{port_b.T}=\mathrm{inStream}\left(\mathrm{port_a.T}\right)$

Variables

 Symbol Units Description Modelica ID $\mathrm{head}$ $m$ Head head $\mathrm{dp}$ $\mathrm{Pa}$ Pressure difference p $\mathrm{mflow}$ $\frac{\mathrm{kg}}{s}$ Mass flow rate mflow $v$ $\frac{m}{s}$ Velocity of flow v $Q$ $\frac{{m}^{3}}{s}$ Volume flow rate Q $\mathrm{Q__target}$ $\frac{{m}^{3}}{s}$ Targeted volume flow rate Q_target

Connections

 Name Units Condition Description Modelica ID $\mathrm{port__a}$  Water Port $\mathrm{port_a}$ $\mathrm{port__b}$  Water Port $\mathrm{port_b}$ $w$ $\frac{\mathrm{rad}}{s}$ Pump speed $\mathrm{w}$ $\mathrm{Q__in}$  If External input of Designed volume flow rate is true Designed volume flow rate input. $\mathrm{Qin}$

Parameters

 Symbol Default Units Description Modelica ID $\mathrm{WaterSettings1}$ $-$ Specify a component of Water simulation settings Settings $\mathrm{w__max}$ $200$ $\frac{\mathrm{rad}}{s}$ Maximum pump speed w_max $A$ $\frac{\mathrm{Pi}}{10000}$ $-$ Flow area A inline - See Data Source Options section above. HQ_datasourcemode $\left[\begin{array}{cc}0& 22\\ \frac{1}{300}& 21\\ \frac{1}{150}& 20.5\\ 0.01& 19\\ \frac{1}{75}& 17.5\\ \frac{1}{60}& 15\\ 0.02& 11\\ \frac{7}{300}& 9\end{array}\right]$ $-$ H-Q characteristic curve, if  = inline. [1] :Volume flow rate [2] :Head HQ_curve $2$ - H-Q characteristic curve, if  =file or attachment. You can specify data by using an attached file or specifying the path of file (.csv and .xls, .xlsx) HQ_data $\mathrm{columns__HQ}$ $\left[2\right]$ - Determines which columns of the data table will be used to interpolate. For example, in an Excel spreadsheet, column A corresponds with 1, column B corresponds with 2, and so on. HQ_columns 0 - Number of rows that are skipped from the top of the data table. HQ_skiprows $\mathrm{smoothness__HQ}$ Table points are linearly interpolated - Determines whether the data points will be interpolated linearly or with a cubic spline. HQ_smoothness $\mathrm{T__const}$ $0.001$ $s$ Time constant for Volume flow rate if Dynamics of mass is Dynamic. T_const $\mathrm{Q__designed}$ $0.1$ $\frac{{m}^{3}}{s}$ use as Designed volume flow rate if Dynamics of mass is Static and External input of Designed volume flow rate is false. Q_designed $\mathrm{false}$ $-$ If External input of Designed volume flow rate is false, input port $\mathrm{Q__in}$ is used as the designed volume flow rate. useExtQ_designed