 EfficientRepresentation - Maple Help

SumTools[Hypergeometric]

 EfficientRepresentation
 construct the four efficient representations of a hypergeometric term Calling Sequence EfficientRepresentation(H, n) EfficientRepresentation(H, n) EfficientRepresentation(H, n) EfficientRepresentation(H, n) Parameters

 H - hypergeometric term of n n - variable Description

 • Let H be a hypergeometric term of n. The EfficientRepresentation[i](H,n) calling sequence constructs the ith efficient representation of H of the form $H\left(n\right)={\mathrm{\alpha }}^{n}V\left(n\right)Q\left(n\right)$ where alpha is a constant, $Q\left(n\right)$ is a product of Gamma-function values and their reciprocals. Additionally,
 1 $Q\left(n\right)$ has the minimal number of factors,
 2 $V\left(n\right)$ is a rational function which is minimal in one sense or another, depending on the particular rational canonical form chosen to represent the certificate of $H\left(n\right)$.
 If $i=1$ then $\mathrm{degree}\left(\mathrm{denom}\left(V\right)\right)$ is minimal;
 if $i=2$ then $\mathrm{degree}\left(\mathrm{numer}\left(V\right)\right)$ is minimal;
 if $i=3$ then $\mathrm{degree}\left(\mathrm{numer}\left(V\right)\right)+\mathrm{degree}\left(\mathrm{denom}\left(V\right)\right)$ is minimal, and $\mathrm{degree}\left(\mathrm{denom}\left(V\right)\right)$ is minimal;
 if $i=4$ then $\mathrm{degree}\left(\mathrm{numer}\left(V\right)\right)+\mathrm{degree}\left(\mathrm{denom}\left(V\right)\right)$ is minimal, and $\mathrm{degree}\left(\mathrm{numer}\left(V\right)\right)$ is minimal.
 If EfficientRepresentation is called without an index, the first efficient representation is constructed. Examples

 > $\mathrm{with}\left(\mathrm{SumTools}\left[\mathrm{Hypergeometric}\right]\right):$
 > $H≔\mathrm{Product}\left(\frac{\frac{1}{2}\left(3{k}^{2}+6k+4\right)\left(2k+3\right)\left(4k+5\right)\left(k+1\right)\left(4k+3\right)}{k\left(4k-1\right)\left(2k-1\right)\left(4k-3\right)\left(2k+5\right)\left(k+2\right)\left(3{k}^{2}+1\right)},k=1..n-1\right)$
 ${H}{≔}{\prod }_{{k}{=}{1}}^{{n}{-}{1}}{}\frac{\left({3}{}{{k}}^{{2}}{+}{6}{}{k}{+}{4}\right){}\left({2}{}{k}{+}{3}\right){}\left({4}{}{k}{+}{5}\right){}\left({k}{+}{1}\right){}\left({4}{}{k}{+}{3}\right)}{{2}{}{k}{}\left({4}{}{k}{-}{1}\right){}\left({2}{}{k}{-}{1}\right){}\left({4}{}{k}{-}{3}\right){}\left({2}{}{k}{+}{5}\right){}\left({k}{+}{2}\right){}\left({3}{}{{k}}^{{2}}{+}{1}\right)}$ (1)
 > $\mathrm{EfficientRepresentation}\left[1\right]\left(H,n\right)$
 $\frac{{64}{}\sqrt{{\mathrm{\pi }}}{}{\left(\frac{{1}}{{4}}\right)}^{{n}}{}\left({{n}}^{{2}}{+}\frac{{1}}{{3}}\right){}{n}{}\left({n}{-}\frac{{1}}{{4}}\right){}\left({n}{+}\frac{{1}}{{2}}\right){}\left({n}{+}\frac{{1}}{{4}}\right){}\left({n}{-}\frac{{1}}{{2}}\right){}\left({n}{-}\frac{{3}}{{4}}\right)}{{\mathrm{\Gamma }}{}\left({n}{+}\frac{{5}}{{2}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}{2}\right)}$ (2)
 > $\mathrm{EfficientRepresentation}\left[2\right]\left(H,n\right)$
 $\frac{{64}{}\sqrt{{\mathrm{\pi }}}{}{\left(\frac{{1}}{{4}}\right)}^{{n}}{}\left({{n}}^{{2}}{+}\frac{{1}}{{3}}\right){}\left({n}{-}\frac{{1}}{{4}}\right){}\left({n}{+}\frac{{1}}{{4}}\right){}\left({n}{-}\frac{{3}}{{4}}\right)}{\left({n}{+}\frac{{3}}{{2}}\right){}\left({n}{+}{1}\right){}{\mathrm{\Gamma }}{}\left({n}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{1}}{{2}}\right)}$ (3)
 > $\mathrm{EfficientRepresentation}\left[3\right]\left(H,n\right)$
 $\frac{{64}{}\sqrt{{\mathrm{\pi }}}{}{\left(\frac{{1}}{{4}}\right)}^{{n}}{}\left({{n}}^{{2}}{+}\frac{{1}}{{3}}\right){}{n}{}\left({n}{+}\frac{{1}}{{4}}\right){}\left({n}{-}\frac{{3}}{{4}}\right){}\left({n}{-}\frac{{1}}{{4}}\right)}{\left({n}{+}\frac{{3}}{{2}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}{2}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{1}}{{2}}\right)}$ (4)
 > $\mathrm{EfficientRepresentation}\left[4\right]\left(H,n\right)$
 $\frac{{64}{}\sqrt{{\mathrm{\pi }}}{}{\left(\frac{{1}}{{4}}\right)}^{{n}}{}\left({{n}}^{{2}}{+}\frac{{1}}{{3}}\right){}\left({n}{-}\frac{{1}}{{4}}\right){}\left({n}{+}\frac{{1}}{{4}}\right){}\left({n}{-}\frac{{3}}{{4}}\right)}{\left({n}{+}\frac{{3}}{{2}}\right){}\left({n}{+}{1}\right){}{\mathrm{\Gamma }}{}\left({n}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{1}}{{2}}\right)}$ (5)
 > $\mathrm{RegularGammaForm}\left(H,n\right)$
 $\frac{{64}{}\sqrt{{\mathrm{\pi }}}{}{\left(\frac{{1}}{{2}}\right)}^{{n}}{}{\mathrm{\Gamma }}{}\left({n}{+}{1}{-}\frac{{I}{}\sqrt{{3}}}{{3}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}{1}{+}\frac{{I}{}\sqrt{{3}}}{{3}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}\frac{{3}}{{2}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}\frac{{5}}{{4}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}{1}\right){}{\mathrm{\Gamma }}{}\left({n}{+}\frac{{3}}{{4}}\right)}{{{2}}^{{n}}{}{\mathrm{\Gamma }}{}\left({n}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{1}}{{4}}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{1}}{{2}}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{3}}{{4}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}\frac{{5}}{{2}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}{2}\right){}{\mathrm{\Gamma }}{}\left({n}{-}\frac{{I}{}\sqrt{{3}}}{{3}}\right){}{\mathrm{\Gamma }}{}\left({n}{+}\frac{{I}{}\sqrt{{3}}}{{3}}\right)}$ (6) References

 Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.