ModifiedMeijerG - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


ModifiedMeijerG

modified Meijer G function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ModifiedMeijerG(as, bs, cs, ds, z)

Parameters

as

-

list of the form [a1, ..., am]; first group of numerator Γ parameters

bs

-

list of the form [b1, ..., bn]; first group of denominator Γ parameters

cs

-

list of the form [c1, ..., cp]; second group of numerator Γ parameters

ds

-

list of the form [d1, ..., dq]; second group of denominator Γ parameters

z

-

expression

Description

Important: The ModifiedMeijerG command has been deprecated.  Use the superseding command MeijerG instead.

• 

The modified Meijer G function is defined by the inverse Laplace transform:

ModifiedMeijerGas,bs,cs,ds,z=12πILΓ1as+yΓcsyΓbsyΓ1ds+yⅇyzⅆy

  

where

as=a1,...,am,Γ1as+y=Γ1a1+y...Γ1am+y

bs=b1,...,bn,Γbsy=Γb1y...Γbny

cs=c1,...,cp,Γcsy=Γc1y...Γcpy

ds=d1,...,dq,Γ1ds+y=Γ1d1+y...Γ1dq+y

  

and  L is one of three types of integration paths Lγ+I, L, and L.

  

Contour L starts at +I&phi;1 and finishes at +I&phi;2 (&phi;1<&phi;2).

  

Contour L starts at +I&phi;1 and finishes at +I&phi;2 (&phi;1<&phi;2).

  

Contour Lγ+I starts at γ+ and finishes at γ+I.

  

All the paths L, L, and Lγ+I put all cj+k poles on the right and all other poles of the integrand (which must be of the form aj1+k) on the left.

• 

The classical definition of the Meijer G function is related to the modified definition by

Gpqmn(z|b1,,bm,bm+1,,bqa1,,an,an+1,,ap)=ModifiedMeijerGa1,,an,an+1,,ap,b1,,bm,bm+1,,bq,logz

  

Note: See Prudnikov, Brychkov, and Marichev.

• 

Three noticeable differences between the notations are:

1. 

the parameters of the modified Meijer G function are separated out into four natural groups,

2. 

&ExponentialE;yz instead of zy is placed inside the integral definition of ModifiedMeijerG, and

3. 

the pq\mn subscripts and superscripts which are now redundant are omitted.

Examples

Important: The ModifiedMeijerG command has been deprecated.  Use the superseding command MeijerG instead.

ModifiedMeijerG1&comma;1&comma;1&comma;1&comma;1&comma;1&comma;2&comma;2&comma;3&comma;4&comma;π

ModifiedMeijerG1&comma;1&comma;1&comma;1&comma;2&comma;2&comma;3&comma;4&comma;π

(1)

evalf

−1.205734962×10−200.I

(2)

s2sum1iModifiedMeijerG&comma;&comma;0&comma;&comma;lnz+ln1+2I&comma;i=0..

s2i=0−1iModifiedMeijerG&comma;&comma;0&comma;&comma;lnz+ln1+2I

(3)

converts&comma;StandardFunctions

2i=0−1i&ExponentialE;−12Iz

(4)

convertexpz&comma;ModifiedMeijerG&comma;z

ModifiedMeijerG&comma;&comma;0&comma;&comma;lnz+Iπ

(5)

convertsinz&comma;ModifiedMeijerG&comma;z

πModifiedMeijerG&comma;&comma;12&comma;0&comma;2lnz2ln2

(6)

convertcosz&comma;ModifiedMeijerG&comma;z

πModifiedMeijerG&comma;&comma;0&comma;12&comma;2lnz2ln2

(7)

convertEiz&comma;ModifiedMeijerG&comma;z

ModifiedMeijerG&comma;1&comma;0&comma;0&comma;&comma;lnz+Iπ

(8)

References

  

Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. Gordon and Breach Science, 1990.

See Also

convert/MeijerG

convert/StandardFunctions

MeijerG