Breather Pseudosphere - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim

Breather Pseudosphere

Main Concept

A pseudosphere is a surface first explored by Eugenio Beltrami in 1868 that has constant negative curvature. In differential geometry, the Gaussian curvature of a sphere is 1/ R2 where R is the radius of the sphere; accordingly a pseudosphere has a Gaussian curvature of 1/ R2. The breather pseudosphere is a one type of pseudosphere which is related to a nonlinear wave solution to the sine-Gordon equation called the breather. The parameterization of the surface in ℝ3 depends on three parameters which can be adjusted in the demonstration below.


The sine-Gordon equation


The sine-Gordon equation is a pun on the famous Klein-Gordon equation for relativistic quantum mechanics. The sine-Gordon equation in 1+1 dimensions, that is one spatial and one temporal, is:


2 Φt2  2 Φx2+ sinΦ = 0 ,


which is very similar to the 1+1 dimensional Klein-Gordon equation:


2 Φt2  2 Φx2+ Φ = 0.


The solutions to the sine-Gordon equation correspond to pseudospherical surfaces, where the function Φx,t is re-expressed in asymptote coordinates to describe a surface. Physicists instead interpret Φx,t in real space-time as a wave propagating in the±xdirection through time t. This wave is nonlinear; consequently it does not dissipate when traveling at a constant velocity. One solution to the sine-Gordon equation is:

Φx,t = 4 arctancos ω 1ω2ω cosh x 1ω2,


where &omega;<1 is a periodic function (Nonlinear Waves, Solitons, and Chaos, 2nd ed. by Infeld and Rowlands). Two properties of this solution are

that it maintains its shape as it travels at constant velocity, and that its energy remains localized.

Turning this into asymptotic coordinates  u&comma; v, gives the function:

fu&comma;v &equals; 4 arctanb1b2sin1b2 vcoshb u,


for the surface corresponding to a breather function. The parameter b changes the number of 'ribs' in the surface, and as b1, the surface transforms into the Kuen surface.  



b parameter


u range

v range





More MathApps