 mrdivide - Maple Help

MTM

 mrdivide
 right matrix division Calling Sequence mrdivide(A,B) Parameters

 A - matrix, vector, array, or scalar B - matrix, vector, array, or scalar Description

 • If B is matrix and A is a matrix, then mrdivide(A,B) computes X, where X is the transpose of mldivide(Bt,At) and At (resp. Bt) is the transpose of A (resp. B).
 • Maple normally treats arrays and vectors as distinct from matrices, in some cases not permitting a matrix operation when the given argument is not specifically declared as a matrix.  This function implicitly extends arrays and vectors to 2 dimensions.  Notably, n-element column vectors are treated as n x 1 matrices.  Also, n-element row vectors and 1-D arrays are treated as 1 x n matrices.
 • If A is a scalar, then mrdivide(A,B) is computed as if A is a 1 x 1 matrix.
 • If B is a scalar, then mrdivide(A,B) computes rdivide(A,B). Examples

 > $\mathrm{with}\left(\mathrm{MTM}\right):$
 > $A≔\mathrm{Vector}\left[\mathrm{row}\right]\left(\left[8,32,21\right]\right)$
 ${A}{≔}\left[\begin{array}{ccc}{8}& {32}& {21}\end{array}\right]$ (1)
 > $B≔\mathrm{Matrix}\left(\left[\left[1,4,2\right],\left[2,5,8\right],\left[1,6,1\right]\right]\right)$
 ${B}{≔}\left[\begin{array}{ccc}{1}& {4}& {2}\\ {2}& {5}& {8}\\ {1}& {6}& {1}\end{array}\right]$ (2)
 > $\mathrm{mrdivide}\left(A,B\right)$
 $\left[\begin{array}{ccc}{1}& {2}& {3}\end{array}\right]$ (3)
 > $A≔\mathrm{Matrix}\left(\left[\left[8,32,21\right],\left[20,77,54\right],\left[32,122,87\right]\right]\right)$
 ${A}{≔}\left[\begin{array}{ccc}{8}& {32}& {21}\\ {20}& {77}& {54}\\ {32}& {122}& {87}\end{array}\right]$ (4)
 > $B≔\mathrm{Matrix}\left(\left[\left[1,4,2\right],\left[2,5,8\right],\left[1,6,1\right]\right]\right)$
 ${B}{≔}\left[\begin{array}{ccc}{1}& {4}& {2}\\ {2}& {5}& {8}\\ {1}& {6}& {1}\end{array}\right]$ (5)
 > $\mathrm{mrdivide}\left(A,B\right)$
 $\left[\begin{array}{ccc}{1}& {2}& {3}\\ {4}& {5}& {6}\\ {7}& {8}& {9}\end{array}\right]$ (6)
 > $A≔\mathrm{Vector}\left[\mathrm{row}\right]\left(\left[8,32\right]\right)$
 ${A}{≔}\left[\begin{array}{cc}{8}& {32}\end{array}\right]$ (7)
 > $B≔\mathrm{Matrix}\left(\left[\left[1,4\right],\left[2,5\right],\left[1,6\right]\right]\right)$
 ${B}{≔}\left[\begin{array}{cc}{1}& {4}\\ {2}& {5}\\ {1}& {6}\end{array}\right]$ (8)
 > $\mathrm{mrdivide}\left(A,B\right)$
 $\left[\begin{array}{ccc}\frac{{52}}{{31}}& \frac{{56}}{{31}}& \frac{{84}}{{31}}\end{array}\right]$ (9)
 > $A≔\mathrm{Matrix}\left(\left[\left[8,32\right],\left[20,77\right],\left[32,122\right]\right]\right)$
 ${A}{≔}\left[\begin{array}{cc}{8}& {32}\\ {20}& {77}\\ {32}& {122}\end{array}\right]$ (10)
 > $B≔\mathrm{Matrix}\left(\left[\left[1,4\right],\left[2,5\right],\left[1,6\right]\right]\right)$
 ${B}{≔}\left[\begin{array}{cc}{1}& {4}\\ {2}& {5}\\ {1}& {6}\end{array}\right]$ (11)
 > $\mathrm{mrdivide}\left(A,B\right)$
 $\left[\begin{array}{ccc}\frac{{52}}{{31}}& \frac{{56}}{{31}}& \frac{{84}}{{31}}\\ {4}& {5}& {6}\\ \frac{{196}}{{31}}& \frac{{254}}{{31}}& \frac{{288}}{{31}}\end{array}\right]$ (12)