lambertw - Maple Help

MTM

 lambertw
 Lambert W function

 Calling Sequence lambertw(M) lambertw(k, M)

Parameters

 M - array k - integer

Description

 • The lambertw function satisfies

$\mathrm{lambertw}\left(x\right){ⅇ}^{\mathrm{lambertw}\left(x\right)}=x$

 • The lambertw(k, M) function computes the element-wise Lambert W function of M.  The result, R, is formed as R[i,j] = lambertw(k, M[i,j]).

Examples

 > $\mathrm{with}\left(\mathrm{MTM}\right):$
 > $M≔\mathrm{Matrix}\left(2,3,'\mathrm{fill}'=3.5\right):$
 > $\mathrm{lambertw}\left(M\right)$
 $\left[\begin{array}{ccc}{1.130289327}& {1.130289327}& {1.130289327}\\ {1.130289327}& {1.130289327}& {1.130289327}\end{array}\right]$ (1)
 > $\mathrm{lambertw}\left(3,M\right)$
 $\left[\begin{array}{ccc}{-1.595634197}{+}{17.18618097}{}{I}& {-1.595634197}{+}{17.18618097}{}{I}& {-1.595634197}{+}{17.18618097}{}{I}\\ {-1.595634197}{+}{17.18618097}{}{I}& {-1.595634197}{+}{17.18618097}{}{I}& {-1.595634197}{+}{17.18618097}{}{I}\end{array}\right]$ (2)