
Physics
Maple provides a state-of-the-art environment for algebraic computations in Physics, with 
emphasis on ensuring that the computational experience is as natural as possible. The 
theme of the Physics project for Maple 2016 has been the consolidation of the new 
functionality introduced during the last three releases, through more than 300 
enhancements across the board, together with signification enhancements and new 
functionality in General Relativity. Most notably, for the 100th anniversary of the 
presentation of the theory of relativity, in Maple 2016 we are bringing to completion the 
digitalization of the solutions to Einstein's equations collected, from more than 4000 
papers, in the classic book "Exact Solutions to Einstein's Equations" by H. Stephani - et al.

In addition, Maple 2016 implements new general functionality that is relevant within and 
beyond Physics, including a new Factor command with the ability to perform factorization 
in expressions involving products of noncommutative operators and the ability to compute 
with differential operators algebraically, that is, operating with them using multiplication to
express application. Combining these two developments, it is now possible to factorize 
algebraic expressions involving differential operators and so, for example, solve partial 
differential equations through factorization. 

Taking all together, the more than 350 enhancements throughout the entire package 
increased robustness, versatility and functionality, extending again the range of Physics-
related algebraic computations that can be done using computer algebra software and in a
natural way.

As part of its commitment to providing the best possible environment for algebraic 
computations in Physics, Maplesoft launched a Maple Physics: Research and Development 
web site with Maple 18, which enabled users to download research versions, ask 
questions, and provide feedback. The results from this accelerated exchange with people 
around the world have been incorporated into the Physics package in Maple 2016. 

Completion of the Database of Solutions to 
Einstein's Equations
A database of solutions to Einstein's equations was added to the Maple library in Maple 
15 with a selection of metrics from "Stephani, H.; Kramer, D.; MacCallum, M.; 
Hoenselaers, C.; and Herlt, E.,  Exact Solutions to Einstein's Field Equations". More 
metrics from this book were added for Maple 16, Maple 17, and Maple 18, up to 225 
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metrics. In Maple 2016, for the 100th anniversary of the presentation of the theory of 
Relativity by A. Einstein, we brought to completion the digitalization of all the 971 
metric solutions collected from more than 4000 papers presented in the General 
Relativity literature. All these metrics can be loaded or searched using g_ (the Physics 
command representing the spacetime metric that also sets the metric to your choice in 
one go) or using the command DifferentialGeometry:-Library:-MetricSearch. When a 
metric is loaded, all the General Relativity tensors (Christoffel, Ricci, Einstein, and 
Riemann) are automatically computed on background and available for further 
computations. These metrics can also be changed in various ways and, automatically, 
all the General Relativity tensors are recomputed on background. You can work with 
these metrics, the ones in the database or any other one you set, using the Tetrads 
formalism too, with the commands of the Physics:-Tetrads package.

In the Maple PDEtools package, you have the mathematical tools - including a complete 
symmetry approach - to work with the underlying partial differential equations. By 
combining the functionality of the Physics:-Tetrads package, the Physics:-
TransformCoordinates command, and the ability to compute Riemann and Weyl 
invariants, you can also formulate and, depending on the the metrics also resolve, the 
equivalence problem; that is: to answer whether or not, given two metrics, they can be 
obtained from each other by a transformation of coordinates, as well as compute the 
transformation.

Examples

Load Physics, set the metric to Schwarzschild (and everything else automatically) in 
one go

That is all you need to do: although the strength in Physics is to compute with 
tensors using indicial notation, by setting the metric as in (1) all of the tensor 
components of the General Relativity tensors are also derived on the fly and ready 
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for use. For instance these are the definition in terms of Christoffel symbols, and the 
covariant components of the Ricci tensor for Schwarzschild solution

These are the 16 Riemann invariants for Schwarzschild solution, using the formulas 
by Carminati and McLenaghan

The related Weyl scalars in the context of the Newman-Penrose formalism; the 
definition is in terms of the Weyl tensor and the tetrad of tensors  of the 

Newman-Penrose formalism

These are the matrix components of the Christoffel symbols of the second kind (that 
describe, in coordinates, the effects of parallel transport in curved surfaces), when 
the first of its three indices is equal to 1; contravariant indices are prefixed by ~
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In Physics, the Christoffel symbols of the first kind are represented by the same 
object (one command, Christoffel, not two) just by taking the first index covariant, as
we do when computing with paper and pencil

One could query the database, directly from the spacetime metrics, for example 
about the solutions (metrics) to Einstein's equations related to Levi-Civita, the Italian 
mathematician

____________________________________________________________

____________________________________________________________

____________________________________________________________

____________________________________________________________

Each triad of numbers indicates the chapter and equation number with which each of
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these metrics appear in "Exact Solutions to Einstein's Field Equations". For example, 
[12, 16, 1] is the metric found in Chapter 12 with equation number 16.1. These 
solutions can be set in one go from the metrics command, just by indicating the triad
of numbers as follows

Resetting the signature of spacetime from "C - - -" to `- C C C` in order to match the 
signature in the database of metrics:

Automatically, everything gets set accordingly; these are the contravariant 
components of the related Ricci tensor

One works with the Newman-Penrose formalism frequently using tetrads (local 
system of references); the Physics subpackage for this is Tetrads

Setting lowercaselatin letters to represent tetrad indices 
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To query about the definition of any of these tensors, of the Tetrads or Physics 
packages, index them with the keyword definition

This is the orthonormal tetrad  related to the metric set in (10) set by the package 

(you can change these tetrads in different ways using the TransformTetrad 
command)

You can check these components directly using the definition. In this case, the right-
hand side is the (orthonormal) tetrad metric

This shows that, for the tetrad components given by (15), the definition (16) holds

One frequently works with a different signature and null tetrads; set that, and 
everything related automatically
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Verifying (21) using the definition (16)

You can also change the signature and everything gets automatically recomputed as
well, from the components of the tensors to the definition of Weyl scalars. You can 
query the value of the signature using Setup

Set the signature to be + - - - , compare the components of the null tetrad metric 
with the components of (20) and verify the tetrad 
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The related 16 Riemann invariants

The ability to query rapidly, set things in one go, change everything and have all the 
quantities automatically adjusted are at the realm of the design of the General 
Relativity functionality of the Physics package, resulting in a rather flexible 
computational environment. 

These are the metrics by Kaigorodov; next are those published in 1962

____________________________________________________________
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The search can also be done visually, by properties. The following is the only solution
in the database that is a Pure Radiation solution, of Petrov Type "D", Plebanski-Petrov
Type "O" and that has Isometry Dimension equal to 1:

Set the solution, and everything related to work with it, in one go

Resetting the signature of spacetime from "C - - -" to `- C C C` in order to match the 
signature in the database of metrics:
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The related Riemann invariants:

To list all the triads of numbers associated to the solutions digitized in the database 
(each triad indicates the Chapter and equation number with which each of these 
metrics appear in the book), enter
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There are as many solutions as

971

Operatorial Algebraic Expressions Involving the
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Differential Operators ,  and  (nabla)

Maple 2016 implements the concept of operatorial expressions, that is, the ability to 
compute with the differential operators  ,  and nabla  from the Vectors 

subpackage, algebraically, considering them as noncommutative operators and using 
multiplication to express their application within expressions. When desired, the
multiplication is transformed into application of the differential operator to the operands
that appear to its right.

The differential operators  ,  and nabla  are thus now considered

noncommutative, in that and they are assumed to commute only with mathematical 
objects that do not depend on the coordinates (that is, constants with respect to their 
differentiation variables). This also means that the Commutator and Anticommutator 
commands, as well as the commands Library:-Commute and Library:-Anticommute, all 
work with these differential operators taking their noncommutative property into 
account.

Among other things, this new ability to compute with differential operators 
algebraically, when combined with the new ability to factorize expressions involving 
products of noncommutative operands, allows for factorizing algebraic expressions 
representing differential operators of higher order into products of algebraic 
expressions representing differential operators of lower order - an operation at the 
realm of solving non-linear differential equations; the first steps of this approach are 
now implemented too.

Examples

Consider the commutator between a scalar  and the nabla operator ; use 
compact display for convenience

New: the expanded form of this commutator now has the correct operatorial 
meaning:
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So all the algebra is performed taking  as a noncommutative operator, as we do 
when computing with paper and pencil. You can apply the differential operators at 
any time using the new Library:-ApplyProductsOfDifferentialOperators

The underlying types working at the core of this implementation of operatorial 
expressions

true

true

false

The differentiation variables associated to  are the coordinates of the Cartesian 
cylindrical and spherical systems of coordinates: .

The same concept is implemented for the differential operators of special and 
general relativity,  , and  . Define system of coordinates, X, then A and B as a 

tensors and for convenience use a compact display

Defined objects with tensor properties

The commutator of  and  multiplied by B  , representing the application of  can 

now be represented as
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Note that to the right of  in the first term there is the product  , so that when 

applying the operator to the product, two terms result, one of which cancels the 
second term in (48)

As an example of the possibilities open with operatorial algebraic expressions 
combined with the new factorization of algebraic expressions involving 
noncommutative objects, consider the factorization of Laplace equation in a 
Euclidean space

* Partial match of  'coordinates' against keyword 'coordinatesystems'

The Euclidean metric in cartesian coordinates
Changing the signature of the tensor spacetime to: C C C C 

Similar problem now with vectorial differential operators, split into time and space 
components,
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The same functionality is implemented for , the covariant derivative operator. Set 

the spacetime to be curved, for instance using Schwarzschild's metric and redefine 
the compact display to use the new (spherical) coordinates

The commutator of covariant derivatives

Multiply this result by a tensor function of the coordinates, say  defined in the 

lines above

Apply the differential operators
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Compare with the expanded version before applying, i.e.: the same expression but 
expressed algebraically using multiplication instead of application

The Bianchi identity can be expressed in terms of commutators

Expand the first commutator

Expand the whole identity

Let D_[mu] be the covariant derivative of gauge theory with A[mu] representing the 
gauge field; for the current signature,

we have

I

Note that the gauge field is introduced depending on the coordinates, which are 
omitted from the display due to the use of PDEtools:-declare in (59). Introduce now 
this definition in the Bianchi identity

Expand the first commutator



> > 

> > 

(12)(12)

> > 

> > 

(79)(79)

(77)(77)

(31)(31)

> > 

(7)(7)

(75)(75)

(73)(73)

(78)(78)

> > 

(72)(72)

(33)(33)

(25)(25)

(29)(29)

(38)(38)

(19)(19)

> > 

(30)(30)

(47)(47)

> > 

> > 

(56)(56)

> > 

> > 

> > 

(80)(80)

(76)(76)

(74)(74)

(63)(63)

> > 

Expand the whole identity

Apply the operatorial expression (72) to a function of the coordinates

Apply the inner commutator of the first term of (71)

Factorization of Expressions Involving 
Noncommutative Operators
One of the interesting things about the Physics package is that it was designed from 
scratch to extend the domain of operations of the Maple system from commutative 
variables to one that includes commutative, anticommutative and noncommutative 
variables, as well as abstract vectors and related (nabla) differential operators. In this 
line we have, among others, the following Physics commands working with this 
extended domain: 
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A new command, Physics:-Factor was added to the family of Physics commands ̀ *`, ̀ .`,
`^`, diff, Expand, Normal, Simplify, Gtaylor, and Coefficients that handle expressions with
noncommutative variables. The approach used in Physics:-Factor is similar to the one 
used in the other commands of this kind, (see for instance
PerformOnAnticommutativeSystem), that is, to transform the problem into one that can 
be treated with the commands that work only with commutative variables, and from 
there extract the result for expressions involving noncommutative variables. This 
approach works in well-defined and relevant cases, effectively extending the 
computational domain of previously existing commands.

Physics:-Factor is also useful when working with noncommutative symbols representing
abstract matrices, that can have dependency, and so they can be differentiated before 
saying anything about their components, multiplied, and be present in expressions that 
in turn can be expanded, simplified and now also factorized. Physics:-Factor is useful as
well with expressions that include differential operators, now treated within Physics as 
noncommutative variables (see the section on Operatorial algebraic expressions).

Examples

First example, because of using mathematical notation, noncommutative variables 
are displayed in different color (olive)

2

A more involved example from a physics problem, illustrating that the factorization is
also happening within the function's arguments, as well as that we can also correctly
expand mathematical expressions involving noncommutative variables
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So first expand

Now retrieve the original expression by recursing over the arguments in order to 
factor the integrand

This following one looks simpler but it is actually more complicated:

The complication consists of the fact that the standard factor command, that 
assumes products are commutative, can never deal with an expression like 

 because if products were commutative the sum of these terms is 
equal to 0. Through algebraic manipulations, however, the expression is also 
factorable

This other one is yet more complicated:

When you expand,

there are various terms involving the same noncommutative operands, just 
multiplied in a different order. Generally speaking the limitation of this approach (in 
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Maple 2016) consists of: "there cannot be more than 2 terms in the expanded form 
containing the same operands" . For instance in (92) the 1st and 4th terms have the 
same operands, that are actually also present in the 5th term but there you also 
have  and for that reason (involving some additional manipulations) it can still be 
factorized:

Recalling, in all these examples, the task is actually accomplished by the standard
factor command, and the manipulations consist of ingeniously rewriting the given 
problem as one that involves only commutative variables, and from the factorization 
of that auxiliary expression extract the correct result for the given expression 
containing noncommutative variables.

Here is an example where the approach implemented does not work (in Maple 2016) 
because of the limitation mentioned in the previous paragraph:

2

In this expression, the 1st, 2nd, 4th and 5th terms have the same operands , , ,  
and then there are four terms containing the operands , , . This type of expression 
is also factorable - work in progress.

As an example of the possibilities open with the combination of new functionality 
regarding operatorial algebraic expressions and factorization of algebraic 
expressions involving noncommutative objects, consider the factorization of 
Laplace equation in an Euclidean space

Changing the signature of the tensor spacetime to: C C C C 

* Partial match of  'coordinates' against keyword 'coordinatesystems'
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Similar problem now with vectorial differential operators, split into time and space 
components,

Tensors in Special and General Relativity
A number of relevant changes happened in the tensor routines of the Physics package, 
towards making the routines pack more functionality both for special and general 
relativity, as well as working more efficiently and naturally, based on Maple's Physics 
users' feedback collected during 2015. 

New functionality
Implement conversions to g_ from any of Ricci, Riemann, Einstein, etc. (all the 
general relativity tensors)

New optional argument, 'freeindices = ...', in TensorArray and in
TransformCoordinates, to indicate the ordering of free indices in tensorial 
expressions - say "A[alpha, beta] + A[beta, alpha]", where this ordering is not 
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obvious, including now a new subroutine to determine this ordering in a 
predictable way and regardless of whether the indices are covariant or 
contravariant.

Implement option 'specializeconstants' within Physics:-KillingVectors

Examples

Rewrite the general relativity tensors in terms of the metric (convert to 
g_)
Set the spacetime to something not flat, for instance Schwarzschild's solution

R

This is the standard definition of the Ricci tensor in terms of Christoffel symbols

When computing field equations, however, we need the expression of the Ricci 
tensor directly in terms of the metric
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This expression is obtained combining (107), with the definition of Christoffel in 
terms of the metric

This formula is also available as the definition of Christoffel entering Christoffel
[definition].

All the General Relativity tensors can now be expressed directly in terms of the
metric in the same way:
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New option  of TransformCoordinates and TensorArray
The new option, freeindices, to indicate the free indices in
TransformCoordinates and TensorArray. Generally speaking, in a tensorial 
expression with more than one free index, there is no way to tell which free 
index comes first. The TransformCoordinates and TensorArray commands 
were using Maple's sort command, resulting in a deterministic, however 
non-obvious choice.
To address this situation, a new optional argument, to indicate the ordering 
of the free indices, say as in freeindices = [~a, b] was implemented. This 
also allows for transforming for instance only one or a restricted number of 
free indices when using TransformingCoordinates. When the option is not 
used, if the tensorial expression is a tensor itself, then the ordering found in
its indices is used, otherwise, sort is used.

Consider for instance a three-dimensional problem in a Euclidean space

The metric:

Define now two tensor with two indices, whose components are given by the 
following matrices:
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Defined objects with tensor properties

Since the space is Euclidean, the covariant and contravariant components are 
the same

Consider now the contracted product

This expression has the free indices a and b, in no particular order. For 
example, consider a coordinate linear transformation (x - old coordinates, y - 
new coordinates)

Transform the coordinates, the third argument indicates the new variables, and
call  the transformed tensor, with the ordering  for the free indices

Change the order of the freeindices
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> > 

> > 

(72)(72)

(33)(33)
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(29)(29)

(123)(123)

(38)(38)
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> > 

(56)(56)

(124)(124)

> > 

> > 

(63)(63)

(85)(85)

> > 

> > 

Transform only one index, first , then , then in sequence

The same option is now available for TensorArray. Compute the tensor 
components of the tensorial expression (120) using the two possible orderings 
of its free indices

New option  of KillingVectors
The design of KillingVectors was revised for Maple 2016 with regards to: a) 
return the Killing vectors using a vector format, not just the solution to the 
underlying PDE system, b) compute their contravariant components by default 
instead of covariant; c) introduce a new keyword specializeconstants to 
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> > 

> > 
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(29)(29)
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(30)(30)

(47)(47)

(56)(56)

> > 

request the specialization of the constants that appear when solving the 
underlying linear PDE system. 

Set a system of Coordinates

* Partial match of  'coordinates' against keyword 'coordinatesystems'

Define a tensor with one index to represent the Killing vector

Defined objects with tensor properties

The components of the contravariant , directly in list format, ready to be 
forwarded to Define to compute furthermore with them:

The same result but this time for the covariant components (for that purpose, 
pass  with a covariant index), and without specializing the integration 
constants,

* Partial match of  'specialize' against keyword 'specializeconstants'

The new format for the output of KillingVectors facilitates computing with 
these results. For example, define V as a tensor using the first Killing vector 
solution in (131), check its contravariant and covariant components, and verify 
that it is indeed a Killing Vector by verifying the definition in terms of Lie 
derivatives.

Define (131)[1] as a tensor
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(133)(133)
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> > 

(63)(63)

(85)(85)
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> > 

> > 

> > 

> > 
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(7)(7)
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(72)(72)

(134)(134)
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(123)(123)

(38)(38)

(30)(30)

(47)(47)

(56)(56)

> > 

Defined objects with tensor properties

Check the covariant and contravariant components of 

Verify that  is indeed a Killing Vector, that is, that the Lie derivative of the 
metric with respect to the  is 0

V

Compute the components of this tensorial equation

Improved functionality
Install new approach for computing the Weyl scalars ~10x faster; fix issue 
noticed during development (missing clearing a cache) and add test with difficult 
example (Kerr metric) for the computation of Weyl scalars

4x speedup in the computation of the Ricci scalars (testing example: the Kerr 
metric)

5x speedup in the computation of the components of the Ricci tensor in the case 
of an arbitrary spacetime metric (10 unknown functions of 4 independent 
variables each).

Examples
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> > 

> > 

Depending on the form of the spacetime metric, the computation of the Weyl and 
Ricci scalars, or the components of the Ricci tensor, can be rather involved, 
requiring handling large algebraic expressions depending on mathematical 
functions. Improving the approach for these kinds of difficult algebraic 
computations is one area of constant development.

Consider the Kerr solution in terms of Boyer and Lindquist coordinates, shown in 
Chapter 5 (equation 5.29) of the book "The large scale structure of space-time" by
S. W. Hawking and G. F. R. Ellis; the corresponding line element 

Set the coordinates, and the metric using this line element all in one go

* Partial match of  'coordinates' against keyword 'coordinatesystems'
Detected `t`, the time variable, in position 1. Changing the signature of the spacetime 

metric accordingly, to: C - - - 

Check the metric



> > 

> > 

(108)(108)

(12)(12)

> > 

(31)(31)

(7)(7)

(116)(116)

> > 

> > 

(72)(72)

(33)(33)

(25)(25)

(142)(142)

(143)(143)

(29)(29)

(123)(123)

(38)(38)

(19)(19)

(97)(97)

(30)(30)

(47)(47)

(133)(133)

(56)(56)

> > 

> > 
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(141)(141)

> > 

(85)(85)

> > 

The Weyl scalars for this metric are now computed 10x faster than in Maple 2015.
Their definition in terms of the four vectors l , n , m , m  of the Newman-Penrose 

formalism

The five Weyl scalars defined above and the time to compute them
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Set now the metric to be entirely arbitrary
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(56)(56)

> > 

> > 

In Maple 2015, on a typical fast machine, the computation of the Ricci tensor 
components was taking around 1 minute. After an optimization of the code it now 
takes around 12 seconds (avoid displaying the components themselves to not 
clutter the display with too large expressions)

The computational length of all the algebraic expressions entering these 
components is

36613509

Vectors Package
A number of enhancements were performed in the Vectors subpackage:

You can now represent the scalar product of a vector with itself by a squaring (power
2) of the vector.

You can now add vectors of different bases and change basis in expressions that 
contain unit vectors of different orthonormal basis.

Examples

Consider the relativistic Hamiltonian of a particle of mass m; you can now enter the 
square of the momentum (scalar product of p with itself) directly as a power, as we 
do when computing with paper and pencil

The expansion of the power of a vector now returns the square of its norm
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> > 
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Introduce now the components of p

Now H, or its expanded form, are given by

Likewise, the expansion computed before entering the components of p now appears
as

Consider the following vectorial expression where the right-hand-side involves unit 
vectors and coordinates of both the cylindrical and spherical basis

Change all to the spherical basis, also the coordinates

* Partial match of  'also' against keyword 'alsocomponents'

The same operation to the cylindrical basis
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* Partial match of  'also' against keyword 'alsocomponents'

The Physics Library
Four new commands, useful for programming and interactive computation, have been 
added to the Physics:-Library package, that now includes 142 documented commands. 
These new ones are:

ApplyProductsOfDifferentialOperators

DelayEvaluationOfTensors

PerformMatrixOperations

ShowTypeDefinition

Additionally, eight new types, related to the developments in Physics for Maple 2016, 
were added to the Physics:-Library:-PhysicsType subpackage of Physics types, for 
programming or interactive purposes. These are

DifferentialOperator, DifferentialOperatorIndexed, DifferentialOperatorSymbol, 
EuclideanIndex, ExtendedDifferentialOperator, 
ExtendedDifferentialOperatorIndexed, ExtendedDifferentialOperatorSymbol, 
TensorWithNumericalIndices

Redesigned Functionality and Miscellaneous
Redesign of D_[mu] to not prematurely evaluate the argument.

Reimplementing Physics:-Dgamma as a tensor with Array representation instead of 
an (old) matrix.

d_[mu](x1) used to return g_[mu,~1], which generally speaking is correct, but in a 
curved spacetime this result is incorrect because d_[mu](x1) is not a tensor while g_
[mu,1] is used as a tensor. For example, taking the covariant derivative of d_[mu](X
[`~1`]) = g_[mu, `~1`] one would get zero on the right-hand side but not zero on 
the left-hand side. This is corrected so that d_[mu](x1) does not return g_[mu,~1] 
anymore when the spacetime is curved.

Change default in KillingVectors: when the vector V is passed without indices, the 
equations for the contravariant V (not the covariant) are solved. 

Change in default of Physics:-KillingVectors: now it returns with all the integration 
constants specialized, unless a (new) optional keyword 'specializeconstants = false' 
is passed. 



(158)(158)

> > 

> > 

(108)(108)

(145)(145)

(12)(12)

> > 

(31)(31)

(7)(7)

(116)(116)

> > 

> > 

(72)(72)

(33)(33)

(25)(25)

(143)(143)

(29)(29)

(123)(123)

(38)(38)

(19)(19)

(97)(97)

(30)(30)

(47)(47)

(133)(133)

(56)(56)

> > 

(149)(149)

> > 

> > 

(63)(63)

(141)(141)

(85)(85)

> > 

Adjust design in Physics:-LieBrackets: when the related LieDerivative returns 0,
LieBracket now returns an n-dimensional Array where n is the spacetime dimension 
and all of its components are equal to 0. 

LieBracket now automatically maps over "mappable' structures, like relations, lists, 
sets, Matrix, or Arrays.

Change in design: avoid swapping the time variable from position 1 to position 4 
when retrieving metrics from the database based on Stephani's book - instead reset 
the signature to be as in the book and keep the metric exactly as presented in the 
book. 

Implement simplification of gauge tensorial indices.

Improve Physics:-Library:-Add to handle complicated examples.

Allow integrating the 'integral form of Dirac' into a Dirac function when Physics is 
loaded.


