The Mathieu Functions: Computational and Historical Perspectives
The Mathieu functions, which are also called elliptic cylinder functions, were introduced in 1868 by Émile Mathieu in order to help understand the vibrations of an elastic membrane set within a fixed elliptical hoop. These functions still occur frequently in applications today. Our interest, for instance, was stimulated by a problem of pulsatile blood flow in a blood vessel compressed into an elliptical cross-section. This talk surveys the historical development of both the theory of Mathieu functions and the methods used to compute them, with a particular focus on some of the interesting people who did the major work: Émile Mathieu, Sir Edmund Whittaker, Edward Ince, and Gertrude Blanch. Time permitting, we will discuss some gaps in current software capability involving double eigenvalues of the Mathieu equation, and some possible ways to fill those gaps using methods developed by Blanch.
Dr. Robert M. Corless is Emeritus Distinguished University Professor at Western University, a member of the Rotman Institute of Philosophy and of The Ontario Research Center for Computer Algebra, and Adjunct Professor at the Cheriton School of Computer Science, the University of Waterloo. He is also Editor-in-Chief of Maple Transactions. His primary research interests are computational linear and polynomial algebra, computational dynamical systems, and computational special functions. His underlying principles are Computational Discovery and Computational Epistemology, and the Ethics of AI, especially in teaching. His current focus is the new field of Bohemian Matrices. He has collaborated and published widely, and is the winner of a Halmos-Ford prize for mathematical exposition.