MapleMBSE 2021 Configuration Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2021

MapleMBSE 2021 Configuration Guide

Contents

INErOAUCLION ..ottt vii
1 Getting StArted ...ovvniieii it e et et e e e e e 1
LT INErOAUCTION «.etie ittt e 1
1.2 Overview of MapleMBSE Mappingcccueevueiineiineiineiieiineiieeieeiieanneennns 1
1.3 MSE Configuration EditOrcccviiiiiiiiiii e e e 2
1.4 Creating a Configuration Filec..cooiiiiiiiiiiiiiii e 7
1.5 An Introductory EXamplec.c.ooiviiiiiiiiiiiiiiii e 11
2 Configuration Language Fundamentalsccocoiiiiieiiiiiiniiiniii e 19
B A\ e] 15 o) | NPT 19
2.2 Overview of an MSE Configuration Filecccccoeiiiiiiiin i, 19
2.3 ECOTEIMPOTL o.uevniieiii ettt e e et e e et e e aaanas 20
B QUALITIETS oottt 21
3.1 AIDULE fIILET «.eoeiie i 21
3.2 Reference filtercouuiiii i 21
3.3 Predicate flterc..iieen i 22
Defining the Predicateooouviieiiiiiiiie e 23
Creating the Filter Logic for the predicateccoccoviiiiiiiiiiieiiieieeeei, 23
Using the Predicate FIlterooiiiiiiiiiiiin e 25
4 Query Path EXPIreSSIONivuiieeiiieii et iee e e e e e e e e e e e e eens 27
4.1 Query Path Expression Definitioncceevviiiiiiiiiiniieiei e 27
5 DAtA SOUICE ..euneiiiiie e 31
6 SyncTable SChEMAoovniiiiii e 33
6.1 SyncTable Schema Definitioncveiviiiiiiiiiii e 33
6.2 Examples of SyncTable Schemacoooooeiiiiiiiiiiiiii e 34
6.3 Mapping the Attribute Values of the Model Elements to the Columns 34
6.4 Mapping the Dimensions to the Recordscooovviiiiiiiiiiiiiniiien, 35
6.5 Alternative and Group DIMENSIONSoivveiineiueineinieiieeiieeierieeieeenaeens 36
6.6 ReferenceDecomposition and ReferenceQuerycoooovviiviiniiiniiiiinnninns, 40
Mapping reference values with ReferenceDecomposition and ReferenceQuery
... 40
ReferenceDecomposition by Examplec.c.ooiviiiiiiiiiiiiniiieiiecececin, 40
References by Dimensions or ReferenceQueryccoeeeviiiiiniiiiiiniinnennnnn. 41
6.7 Key Columns Defined in SyncTable Schemaccccoeiiiiiniiniiiiiininnne. 42
6.8 Using Default Value Generation in a Columncocevviiiiiniiniinnnnnnnnn. 43
LAMIEATIONS ... eetieiiie ettt e e e e e 43
Data Insertion Order with the Default Columncooviiiiiiiiinann.. 43
T SYNCTADIE ...ovniiiiie e 47
8 Laying OUL SYNCVICWS ...uuiveiineiineiieiieei ettt et e e e e et e e e e aieeaeeaeeaeeaeanaees 49
8.1 Setting up a Workbook and Worksheetscccoveiiiiiiiiiiiiiniiieee, 49
8.2 Worksheet Template and View Layoutcooeeviiiiiieiiiiiniiieiieiieeine, 50
Table VIEW Layoutoovniiiiiiiiieiie e e eens 50

il

v

Contents

Matrix View Layout

List of Figures

Figure 1.1: Schematic Diagram of How MapleMBSE Workscccoiviiiiiiiinnaennn. 2
Figure 5.1: Relationship between model elementscccoveiiiiiiiiiiiiieiinennnn.. 31
Figure 6.1: SIMPIETIEE ...c.uuiiiiiii e 34
Figure 6.2: SyncTable From Simple Treeccouuiiiiiiiiiiiiieiieeee e 35
Figure 6.3: SyncTable From Simple Tree (add record keyword to top level

DIMENSION .. eititeieiiii ettt 36
Figure 6.4: Simplified Model Number Two: Using Alternative and Group 36
Figure 6.5: Tree From Simplified Model TWOc.coeiiiiiiiiiiiiiiii e, 37
Figure 6.6: Table Made From The Tree of Simplified Model Twoc.cceeeunneenn. 38
Figure 6.7: Another Tree Made From Simplified Model TWoc...ccoveiiiiiinnenn, 39
Figure 6.8: Another Table Made From Simplified Model Twoccoocoiiiiiiinnn. 39
Figure 6.9: Target Modelcoouiiiiiiiiiiii e 41
Figure 6.10: Illustration of ReferenceDecompositioncc.cveeeuieiiiieiiineennnnnen. 41

vi < List of Figures

Introduction

MapleMBSE Configuration Guide Overview

MapleMBSE™ gives an intuitive, spreadsheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The configuration file specifies the rules for how your data from your model is extracted
and mapped into a table format along with how and where the extracted data is presented
in an Excel spreadsheet.

In the following chapters, this guide will provide detailed instructions on working with
configuration files and the configuration file language.

Related Products

MapleMBSE 2021 requires the following products.

* Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019

* Oracle® Java® SE Runtime Environment 8.

Note: MapleMBSE looks for a Java Runtime Environment in the following order:

1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE. HOME and JAVA HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following versions
are supported: Rational Rhapsody Version 8.1.5, 8.3 and 8.4

« Teamwork Cloud™ server 18.5 SP3 or 19.0 SP4
If you are using Eclipse Capella™ with MapleMBSE, the following version is supported:

« 140

» Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

vii

viii ¢ Introduction

Related Resources

Resource Description

System requirements and installation instructions for
MapleMBSE Installation |MapleMBSE. The MapleMBSE Installation Guide is available
Guide in the Install.html file located either on your MapleMBSE
installation DVD or the folder where you installed MapleMBSE.
MapleMBSE User Guide |Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE Applications | Applications in this directory provide a hands on demonstration
of how to edit and construct models using MapleMBSE. They,
along with an accompanying guide, are located in the Application
subdirectory of your MapleMBSE installation.

Frequently Asked You can find MapleMBSE FAQs here:

Questions

https://faq.maplesoft.com

Release Notes The release notes contain information about new features, known
issues and release history from previous versions. You can find
the release notes in your MapleMBSE installation directory.

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help
To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product

documentation, contact doc@maplesoft.com.
Copyrights

* Microsoft, Windows, Windows Server, Excel, and Internet Explorer are registered
trademarks of Microsoft Corporation.

» Teamwork Cloud, Cameo Systems Modeler, and MagicDraw are registered trademarks
of No Magic, Inc.

» Eclipse is a trademark of Eclipse Foundation, Inc.

* UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

1 Getting Started

1.1 Introduction

The goal of this section is to introduce the elements of the configuration and template files
and how they are connected together by defining a simple configuration file. The details
about the elements are given in the following chapters.

A configuration file defines what data from a model is accessible and how it is presented
in Excel. In order to do that, the configuration file must define the following elements.
» The content of the Excel workbook: how many and what types of worksheets it has.

» For each worksheet, define the area that is associated with the model data - the SyncView
area and how it is displayed.

* For each SyncView area define what model data is displayed using a SyncTable.

1.2 Overview of MapleMBSE Mapping

The primary purpose of MapleMBSE is to map diagram-based models in UML into a table
form that can be easily consumed and updated by an end user.

Mapping model information from diagram-based model form into table form requires a two
step process.

First, a SyncTable Schema must be defined to convert the model to an intermediate table
structure called a SyncTable.

A SyncTable Schema specifies how to find objects in a model starting with an object given
by a DataSource. A pair of a DataSource and a SyncTable Schema defines one SyncTable.

Next, the SyncView Layout must be defined for how the SyncTable is displayed on a
spreadsheet by specifying a layout and which columns of the SyncTable to include or omit.
The resulting part of the spreadsheet displaying the SyncTable is called SyncView. The
schematic flow of displaying a model in an Excel spreadsheet is shown in

Figure 1.1 (page 2).

2 1 Getting Started

Model oo irce SyncTable SyncView
SyncTable Schema SyncView Layout
M, I—S
Ld
DataSource

Figure 1.1: Schematic Diagram of How MapleMBSE Works

The definition of a DataSource, a SyncTable Schema, and a SyncView Layout is called an
MSE configuration. The language used to define an MSE configuration is called MSE
configuration language. In this guide we provide the specification of the MSE configuration
language. For notation used in the specification, see Notation (page 19). MSE configuration
files are text files that can be edited and created with any text editor. However, it is recom-
mended to use MSE Configuration Editor which provides convenient syntax highlighting
and checking. For the installation instructions, see MSE Configuration Editor (page 2).
Examples in this guide use the MSE Configuration Editor.

1.3 MSE Configuration Editor

The MapleMBSE Configuration Editor (a.k.a MSE Editor) is provided in the same package
as MapleMBSE-Editor <VERSION>.zip and can be downloaded from:

https://www.maplesoft.com/support/downloads/index.aspx#mbse.

The MSE Editor is an Eclipse add-on, and you can install with the following steps:
1. Launch Eclipse (Oxygen).
2. Select Help, then Install New Software.

1.3 MSE Configuration Editor « 3

€O @

&+ ®

O e ¢

e

3. Click Add to display the Add Repository window.

Welcome

Help Contents

Search

Show Contextual Help
Show Active Keybindings...
Tips and Tricks...

Report Bug or Enhancement...
Cheat Sheets...

Tritest About...

Eclipse User Storage
Perform Setup Tasks...

Check for Updates

Install Mew Software...

Install Modeling Components
Eclipse Marketplace...

About Eclipse

Ctrl+5hift=L

L

4 + 1 Getting Started

& Install T =
Available Software l
Select a site or enter the location of a site. 3 '|l‘—-—
o .
Work with: type or select a site [Add Manage... I
type filter text
Mame Version
7] (D) These is no site selected.
Select All Deselect All
Deetails
(¥ Show only the latest versions of svailable software |1 Hidie items that are already installed
[¥| Group items by category What is already installed?
7] Show only software applicable to target environment
[¥] Contact all update sites during install to find required software
Ba Mext Finish Cancel

(:?:I

4. In the Add Repository window click Archive.

& Add Repository

Marme:

Location: httpe//

@

OK

Archive...

Cancel

)

5. Find and select the MapleMBSE-Editor 2020.1.zip file.

1.3 MSE Configuration Editor * 5

© Repository archive 3
C’\J [l « 2018-11-08 » 1361046 » MapleMBSE » output » ~ [#4 || Search cutput ol
Organize = Mew folder = 0l @
L java - Mame ° Date modified Type
. logs .
) . N’: . 1) MapleMBSE_Excel-Test_R1.0_181108-1225-64.zip 11/8/201812:29 PM Compress
= h? = = -2ip 11/B/201B8 12:20 PM Compress
. bin
') MapleMBSE-Editor_R1.0_181108-1225.zi 11/B/2018 12:28 PM Compress
\ BuildR E B
. Bui
- |:| 1, MapleMBSE-Full_R1.0_181108-1225-x54 zip 11/8/201812:28 PM Compress
. chat
- 1 MapleMESE-Full_R1.0_181108-1225-x86.zip 11/8/201812:28 PM Compress
J core
L ext
.. maple
.. maple
4 | outpui
Lk Map - 4 W '
File name: - Jar".zip vI
Open I l Cancel J

6. Click Open.
7. Click OK.

S Add Repository

Marme:

Local...

Location: jarfile/T:/chat/maplembse/2018-11-08/1361046,/ MapleME Archive...

@

| ok

Cancel]

8. From the list of files, select MapleMBSE MSE Editor and then follow the instructions

shown in the dialog.

6 < 1 Getting Started

S Tnstall = [E] =]
Available Software

Check the items that you wish to install ‘s
Workwith: 'MapleMBSE/output/MapleMBSE-Editor_R1.0_181108-1225.2ip)f Add. || Manage.. |
type filter test

Mame Version
¢, [10 MapleMESE MSE Editor]

|| 000 MapleMBSE Test Meodel Editor

4| nE [3

| SelectAll || Deselectall | 2itemsselected

Details
Show only the latest versions of available software | Hide items that are already installed
|| Group items by categary What is already installed?

["] Show only software applicable to target environment
[¥] Contact all update sites during install to find required software

@ < Back Finish Cancel

9. Click Next.

1.4 Creating a Configuration File < 7

& Install o |[=E =
Available Software

Check the items that you wish to install. 1 I""
Work with: MapleMBSE/output/MapleMBSE-Editor_R1.0_131108-1225.zip)f Add... | Manage... J

type filter test

Marne Version

7| 000 MapleMBSE MSE Editor
000 MapleMBSE Test Meodel Editor

] i 2

Select All Deselect All 2 iterns selected
Details
| Show only the latest versions of available software #| Hide items that are already installed
|| Greup items by category What is already installed?

Show only software applicable to target environment
[¥] Contact all update sites during install to find required software

4 :‘;l'l

< Back .. Fimsh Cancel

10. Click Next.

11. To proceed, accept the terms of the license agreements.
12. In the security warning dialog click Install Anyway.
13. Click Finish.

14. Restart Eclipse.

1.4 Creating a Configuration File

To use the editor, you first need to creat a project folder for your configuration file(s) in
your Eclipse workspace. Then, add an MSE file to your project file.

Note: Double-clicking an MSE file in the workspace launches the editor.

8 < 1 Getting Started

To create the project folder and MSE file do the following:

1. In Eclipse, select File-> New-> Project-> General Project.

s

= Mew Project

Select a wizard

Create a new project resource

Wizards:
type filter text

@ Java Project
Lt Plug-in Project
4 [~ General
=% Project
b = OV
[= Eclipse Modeling Frarnework
'[gh? Ecore Modeling Project
% EMF Project
&% Ernpty EMF Project
» = EMF Forms
» [= EMF Parsley
> = Java

9

L3

m

@ < Back

Mext =

Finish

Cancel

2. Click Next.

3. Enter a name for the project.

1.4 Creating a Configuration File * 9

= Mew Project =] @

Project

Create a new project resource, f
Project nam(testl:' roject)

Uze default location

. Check default location to save the project to your default Eclipse workspace. Otherwise,
enter the path to the workspace you want to save the project to.

. Click Finish.

. Right-click on the newly created project, then select New->File.

10 + 1 Getting Started

|m' = 195 key colu
| MNew Y2 JavaProject
Open in New Window 3 Project..
Show In Alt+Shift+W » | 5 Package
Copy Ctrl+C G Class
55 Copy Qualified Name @ Interface
Paste Ciey | & Enum
3% Delete Delete @ Annctation
&Y% Source Folder
Remove from Context Ctrl+ Alt+5hift+ Down 18 Java Working Set
Build Path " E% Folder
Refactor Alt+Shift+T b(jj File j)
pa Import.. [Z Untitled Text File ¥
g Export.. j Task
Ef JUnit Test Case
«# Refresh F5
Close Project 4 Example..
Assign Werking Sets... = Other... Ctrl+ M
Run As r
Debug As 2
Restore from Local History...
Team b
Compare With 3
Configure 3
Properties Alt+Enter

7. Enter a name for the new file.

1.5 An Introductory Example « 11

£ New File = |-G [
File

Create a new file resource,

Enter or select the parent folder:

testProject

1= testProject

File name: | firstConfigFile]

Advanced »»

'/?j' Finish] | Cancel

8. Click Finish.

1.5 An Introductory Example

In this example, we want to define a configuration that allows us to view and update top-
level packages in a UML model. The first step is to import the definition of a UML
metamodel. A metamodel, called an Ecore, defines the types of elements a UML model
may have and their relationships. The definitions inside the configuration file that allow us
to access different elements of a model rely on the structures defined by the imported
metamodels. To import an Ecore metamodel, use an Ecorelmport construct as follows.

import-ecore "http://www.eclipse.ocrg/uml2/s5.8.8/UML"

There are two steps in converting model data into its representation in Excel. First, we define
a SyncTable Schema that converts the data into an intermediate table called a SyncTable.

12+ 1 Getting Started

In the second step, the SyncView Layout defines how a SyncTable is displayed on a
spreadsheet by specifying which SyncTable columns will be displayed, as well as their po-
sition and layout. The resulting part of the spreadsheet displaying the SyncTable is called
the SyncView.

A SyncTable Schema defines how a set of model elements is mapped to a table structure.
In this example, we define a SyncTable Schema called PackagesTable.

synctable-schema PackagesTable{

I

Note the MSE Editor performs some testing of the correctness of the defined structures.
The syntax error highlighting the closing bracket indicates that definition is incomplete
without defining a dimension.

We define the top level dimension to be an element of a Package type.

A dimension is a basic structure of a SyncTable schema. Each dimension corresponds to a
model element. The first dimension of a SyncTable Schema is a Top Level Dimension. It
represents the type of element to which the schema applies. Each following dimension is
defined with respect to the preceding one.

synctable-schema PackagesTable{
dim [Package]|
}

A dimension consists of columns. Each column represents an attribute of the element that
the dimension describes. To identify the element some of the columns must be designated
as key columns. They must represent the attributes of the element that would allow you to
identify it uniquely. Without the definition of the key column(s) the definition of the dimen-
sion is incomplete. It is indicated by a syntax error.

For a package, its name can identify it uniquely. We define a key column that corresponds
to the 'name' attribute of a Package class.

synctable-schema PackagesTable {
record dim [Package] {
key column /name as PackageName
h

}

This SyncTable schema definition allows you to view, add and delete packages by referring
to their name. To create a SyncTable, the schema must be applied to a Data Source. A Data
Source defines a set of model elements. The Data Source representing the top-level data
structure of a model has the name Root. This is a reserved name. The Root is declared as
follows.

1.5 An Introductory Example < 13

data-source Root[Model]

The declaration specifies that the type of the top-level data structure is Model. You can see
the types and the structure of a UML model by opening the .uml file in a text editor. For
example, the following is a snippet from UserGuide.uml in the installer, found in the
<MapleMBSE>\Examples\UserGuide directory, where <MapleMBSE> is your
MapleMBSE installation directory.

<?xml version="1.0" encoding="UTF-8"7?>
<uml:Model xmi:version="20131001"
xmlns:xmi="http://www.omg.org/spec/xXMI/20131001"
xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"
xmi:id="_ D2UUEM MEee6666BhKb4Cg" name="UserGuide">

<packagedElement xmi:type="uml:Package" xmi:id="_ OeqyOM MEee6666BhKb4Cg"
name="Packagel" visibility="public">

</packagedElement>

<packagedElement xmi:type="uml:Association”™ ...>
</packagedElement>

</uml :Model>

The text representation of the model is written in XML. The model and its content are rep-
resented by XML elements. The top-level element is defined by the start and end tags:

<uml:Model ...>

</uml:Model>

The element is a "uml:Model" that is of a type Model defined by the "uml" namespace. The
"uml" namespace is defined among the attributes of the Model element.

xmlns:uml="http://www.eclipse.org/uml2/5.0.0/UML"

The definition matches the Ecorelmport we are using in the configuration file. So the type
"Model" used in the definition of the Root Data Source is the same as "uml:Model" in the
model file. We want to apply the PackageTable schema to define packages inside a model,
and the type of the data source it applies to is Package. We define a data source that represents
packages in a model as follows.

data-source topPackages=Root/packagedElement[Package]

This statement defines a new data source called topPackages. The syntax
Root/packagedElement means we are looking at the Model elements inside the Root
that are defined by the tag packagedElement. The syntax packagedElement [Pack—

14 + 1 Getting Started

age] means we are choosing only those packagedElements that have type Package.
Looking back at the UML file, we can see that packagedElement could have at least
two types: Package or Association. We are choosing only the ones of type Package.

To create a SyncTable we apply the SyncTable schema to the Data Source using angle
brackets.

synctable packagesTable = PackagesTable<topPackages>

The next step is to define how the SyncTable is represented in an Excel worksheet. We do
this by defining a Worksheet Template. We define a Worksheet Template called Pack-
ages.

worksheet-template Packages|

The template uses one argument p of type PackagesTable. That is, p must be a
SyncTable created from the SyncTable schema PackagesTable.

worksheet-template Packages(p : PackagesTable){

h

The Worksheet Template must define where the SyncView for the given argument is placed
and what orientation it has. In this example we choose the SyncView for the argument p to
be a vertical table (named tab1) and start in cell B3 (row 3, column 2). The section defining
tabl is called SyncView Layout.

worksheet-template Packages(p : PackagesTable){
vertical table tabl at (3,2) = p {

}
}

We also need to specify which columns of the SyncTable should be included in the Syn-
cView. A SyncTable column becomes a field in a SyncView record. A record is simply the
collection of fields. In a vertical SyncView a record is a row in the table and the fields are
the cells in the row (see the Operations Overview section in Chapter 2 of the MapleMBSE
User Guide for more details). Some fields in a record must be marked as key fields to in-
dicate that those fields are used to identify the record uniquely. In the PackageTables schema
there is only one column, PackageName. It is a key column and should be used as a key
field. PackageName is of the String data type. The definition of the SyncView layout is
then as follows.

worksheet-template Packages(p : PackagesTable){
vertical table tabl at (3,2) = p {
key field PackageName : String]|
}

}

1.5 An Introductory Example < 15

We also want to indicate that the column should be sorted in ascending order when a model
data is loaded or when sort operation is performed after adding new data. We do so by
specifying the name of the field in the sort keys.

worksheet-template Packages(p : PackagesTable) {
vertical table tabl at (3,2) = p {
key field PackageName : String
sort-keys PackageName

}

Finally, we need to define a workbook that consists of a worksheet based on the defined
template applied to an instance of a SyncTable.

workbook {
worksheet Packages(packagesTable])
¥

The final content of the configuration file is as follows.

import-ecore “http://www.eclipse.org/uml2/5.@.@/uML"

data-source Root[Model]
data-source topPackages=Root/packagedElement[Package]

= synctable-schema PackagesTable {
E: record dim [Package] {
key column /name as PackageName
}

}

synctable packagesTable = PackagesTable<topPackages>
-~ worksheet-template Packages(p : PackagesTable) {
B wvertical table tabl at (3,2) = p {
key field PackageName : String
sort-keys PackageName

}

= workbook {
worksheet Packages(packagesTable)

A

The resulting file can be found in GettingStarted.MSE, in the MapleMBSE Configuration
Editor Package.

You can use the configuration file with any UML model. For example, opening MapleMBSE
with this configuration file and <MapleMBSE>\Example\UserGuide\User Guide.uml,
where <MapleMBSE> is the location where MapleMBSE is installed, gives the following
result.

16 + 1 Getting Started

A B C D E
1
2
3 Packagel
4
5
6
7
H 4 b | Packages . Sheetl . Sheetz . Sheets . T[] 4

The SyncView area of the worksheet can be highlighted by choosing the name of the cor-
responding SyncView in the name box. The SyncView name has the following format.

_MapleMBSE SyncView <Worksheet Name> <SyncView Layout Name>

_MapleMBSE_SyncView_Packages_tabl -
A B C D E F G

1

2

3 Packagel

4 |

5

A

You can add new packages to the model by adding rows in the SyncView area or by entering
them in the insertion area (cell B4). See the MapleMBSE User Guide, Chapter 2, Adding
Model Elements for more details.

For convenience, it is good to add a heading to the column explaining what it is and maybe
change the width of the column. Any such formating changes done when editing a model
are not saved with the model data. Instead, they should be done in a separate file called
Template File. A template file is an Excel file that has the same base name as the configur-
ation file and is placed in the same folder. MapleMBSE looks for the sheets in the workbook
that match the names of the worksheets defined by the configuration file and loads the
specified SyncViews into that sheet. To define a template file for our example, we need to
create an Excel file with the name that matches the name of the configuration file and contains
a sheet called Packages.

To create the template for this example, we define a new Excel workbook. We name one
of the sheets Packages, and delete others. The data with the package name is displayed in
column B starting with row 3. We can define the heading for the column in cell B2 and in-
crease the width of the column.

1.5 An Introductory Example < 17

Packaﬁe Mame
]

4 4 ¢ H| Packages / ¥
Readv | P | |

= ST, R - OB S T)

We save the template file with the same base name as the configuration file and in the same
folder. Now if we open MapleMBSE with the configuration file and the example model
UserGuide.uml we get the following.

A B C D
Package Name

W 4+ + | Packages /¥
- . [B}

L I B TR

Tip: the template file for this example can be found in GettingStarted.xls, in the same
place with GettingStarted.MSE.

Another way to create a template could be to open a model with the configuration file as
we did before, then save it as an Excel file using Add-Ins > MapleMBSE > Export To
Excel File. This way we have the right number of sheets with their names. It is also easier
to judge where the headings need to be added and how wide the columns should be. Any
model data loaded in the tables should be removed. If it is left in the template it may create
confusion when MapleMBSE uses the template. MapleMBSE will load SyncViews according
to the specifications in the configuration file, so some data may be overwritten and some
may not, depending on the model file with which the template is opened.

18 + 1 Getting Started

2 Configuration Language Fundamentals
2.1 Notation

The formal grammar of MSE Configuration Language is given using a simple Extended
Backus-Naur Form (EBNF) notation. Each rule in the grammar defines one symbol, in the
form:

symbol ::= expression

The following notations are used in expressions.

Notation Usage

'string' literal string matching the string between the quotes

(expression) |expression is treated as a unit

A* 0 or more occurrences of A
A+ 1 or more occurrences of A
A? 0 or 1 occurrence of A

A | B AorB

<A> name of an element of type A

For reference see https:/www.w3.org/TR/2008/REC-xml-20081126/#sec-notation

2.2 Overview of an MSE Configuration File

The following is the formal definition of the configuration file.
MSEConfiguration ::= EcorelImport*

WorkbookInstance &
(DataSource

| SyncTableSchema

| SyncTable

| WorksheetTemplate
)*

In MSEConfiguration, EcoreImports come first, and then other elements can be specified
in any order. The definitions of the elements are given in the following chapters. The fol-
lowing is an example of the procedure for writing an MSE Configuration file.

1. Define a Data Source and a SyncTable Schema.
2. Define a SyncTable with the pair of Data Source and SyncTable Schema.
3. Define the view and the layout of the SyncTable on WorksheetTemplate.

19

20 + 2 Configuration Language Fundamentals

4. Define a worksheet in the WorkbookInstance with the pair of the WorksheetTemplate
and SyncTable.

2.3 Ecorelmport

Ecorelmport declares the type of model to be edited with the configuration file. A type of
model is defined by specifying an IRI of a metamodel definition. A metamodel, called an

Ecore, defines types of elements a model may have and their relationship. Model elements
and their attributes are queried using the structural elements defined by Ecorelmports. The
formal syntax of Ecorelmport declaration is as follows.

EcoreImport ::= 'import-ecore' '"'IRI'"' ('as'
D)

In the 'import-ecore’ ""'IRI""" (‘as' ID) (page 20), IRI is an identifier of the Ecore
metamodel in the form of IRI (International Resource Identifier). Different types of models
have their own metamodels. The following is a list of the available Ecore models.

Type IRI

UML http://www.eclipse.org/umli2/4.0.0/UML
SysML http://www.eclipse.org/papyrus/sysml/1.4/SysML
Teamwork http://www.nomagic.com/magicdraw/UML/2.5
Cloud 18.5

Teamwork http://www.nomagic.com/magicdraw/UML/2.5.1
Cloud 19.0

Rhapsody http://w3.ibm.com/Rhapsody/api/
MapleMBSE | http://maplembse.maplesoft.com/common/1.0
metamodel

3 Qualifiers

Qualifiers are used as a way to specify the type of model elements that you want to query
or create.

The basic qualifier syntax is as follows:

[Classifier|filter="value"] where a Classifier is a type of element, such as a
Class.

The £ilter must be an EA#tribute, which is a property that belongs to the Classifier ele-
ment. There is an option to use EReference as filter but the syntax differs.

The formal definition of a Qualifier is given in the table below.

Qualifier =Y

(EcoreImport'::')? EClassifier

('|" index=INT)?

('"|'" FeatureFilter (',' FeatureFilter)*)?

l:| L}
FeatureFilter |[i= |AttributeFilter | ReferenceFilter| PredicateFilter
AttributeFilter|::= | (EcoreImport'::')? EAttribute'='STRING
ReferenceFilter|::= | (EcoreImport'::')? EReference'='? Qualifier

3.1 Attribute filter

Filters, either attribute or reference based, are applied in 2 scenarios, when gathering elements
from the model and when creating new elements from scratch.

The first scenario, when querying the model, attribute filters simply verify that the real value
and the value used in the configuration files are the same. Then, only those that match are
added to the syncview.

Conversely, the attribute filter when creating a new element, has a different meaning. In
this scenario, this kind of filter is initializing some attributes of the newly created element.
For example, the following qualifier [Property|aggregation="composite"]
has 2 functions. The first one, displaying only those properties with AggregationKind equals
to composite, and second, initializing the aggregation attribute with the value composite.

3.2 Reference filter

Reference filter has also the querying-creating duality, despite the different natures of attrib-
utes and references. The differences between attributes and references are analogous to the
differences of basic types and objects like in other programming languages. References are
used to point to hard-typed Classifiers, which have their owned attributes and references.

21

22« 3 Qualifiers

Providing an excepted value for an attribute is easy; strings, integer, boolean, and other
basic types have the same values each time the model is queried. But it is impossible to
provide a constant value for a reference and use it to filter, pointers change each time, the
memory addresses are not constant in the model. This is why both filters have different
syntaxes. A reference filter uses an inner qualifier to describe the kind of element that
MapleMBSE is expecting to match. For the querying is as simple as the attribute filter, but
there are some special cases to consider when initializing.

While querying with the following qualifier [Prop-
erty|type=[Class|name="block”]], the inner qualifier is helping to filter all
Classes named block, and only Properties with a type reference to such classes would be
displayed.

The reference filtering initialization has different behaviors depending on the type of refer-
ence. EReferences have properties of their own, like containment, multiplicity, and derived.
Containment refers to the fact that a reference subsets ownership, for instance, packagedEle-
ment is a containment for Package, or slot is a containment for InstanceSpecification. Derived
means that the value is a calculation of other attributes, ownedElement is a derived reference.
Depending on which one of the reference filters is being used MapleMBSE would create a
new element, refer to an existing one, or simply do nothing. Generally, if it is containment
the filter initialization would create a new element, if it is derived the filter would not change
a thing, and the rest of the time if there is a single element result of the inner qualifier in
the whole model then a reference would be initialized to that Element. For example, let us
revisit the previous qualifier [Property|type=[Class|name="block”]], butthis
time during creation. The outer qualifier dictates what kind of Classifier is being instantiated,
in this case a Property. The reference type is a non-containment, non-derived, and single
valued reference; this means that the inner qualifier would try to find a single Class named
block to fulfill the type reference while initializing the filter. If a unique Class named block
exist in the model, then the newly created Property would be typed using a reference to that
Class. Another example could be [Class|ownedAttrib-
ute=[Port|type=[Class|name="block”]]], thisillustrates how it is possible
to nest filters. When creating a element with such qualifier, a Class would be instantiate
and also a Port, this is due to the fact that ownedAttribute is a containment reference. Also,
the Port that is created would be typed as mentioned before.

3.3 Predicate filter

A Predictate is a function that returns a boolean (true or false) value.
MapleMBSE uses predicates in the context of filtering.

The three steps involved in creating a predicate filter:

1. Defining the Predicate

2. Using the Predicate
3. Creating the Filter Logic for the predicate.

3.3 Predicate filter « 23

Defining the Predicate

predicate hasnotype := NOT Port.type[Class]

Creating the Filter Logic for the predicate

Unary Predicates

MapleMBSE predicates that take a single argument and return a boolean value.
NOT

The NOT predicate syntax is NOT (Predicate).

For example, NOT Port.type[Class]

N-ary Predicates

MapleMBSE predicates that can take multiple arguments and return a boolean value.

OR, AND

The OR/AND syntax is: [OR|AND] (Predicate (; Predicate)+)
This means that either OR or AND can take multiple predicates as arguments, with each
predicate separated by a semicolon.

OR1
This n-ary operations check that exactly 1 predicate is true in order to return true. The syntax

is of the form:
OR1 (Predicate (; Predicate)+)

Propositions
Unary and n-ary predicates do not query the model data. Those predicates delegate the
matching to their children. Propositions, however, have no children and do query the model

data. Proposition predicates are the leaves of the predicate tree. They are responsible for
matching the data and the custom filter.

Attribute Proposition

Using an EAttribute, this proposition can match a string to a value stored in the model. If

24 < 3 Qualifiers

multiple strings are given, they constitute an implicit OR. The syntax
is of the form:

(EcoreImport::)? (EClassifier/)?EAttribute = value(,value)*

Reference Proposition

Using an EReference, this proposition can match Qualifiers to the objects stored in the
model. If multiple qualifiers are given, they constitute an implicit OR. The syntax is of the
form:

(EcoreImport::)? (EClassifier [/ | .])? EReference Qualifi-
er (,Qualifier)*

Subset Proposition

Sometimes, MapleMBSE returns comma-separated list of strings, and instead of matching
the same concatenated string, it would be better to perform the subset operation. For this
subset proposition, the syntax would be of the form:

(EcoreImport::)? (EClassifier /)?EAttribute [SUBSET|SUPERSET]
value (,value) *

Inequality Proposition

SysML supports numeric basic types and MapleMBSE should be able to create predicates
using those types. The most powerful way to take advantage of numeric values is with in-
equality operations of the form:

(EcoreImport::)? (EClassifier/)?EAttribute [=]|!=|<|<=|>|>=]="?
intValue

Counting Proposition

There are times when a user wants to filter elements containing a specific amount of sub-
elements. To accomplish this, use counting propostions of the form:

COUNT (EcoreImport::)? (EClassifier [/ | .])?EAttribute
[=]!=|<|<=|>|>=]=? intValue

3.3 Predicate filter ¢ 25

Using the Predicate Filter

When using Predicate filtering, the predicate filter syntax should be:

/gpe[Classifier| named predicate] where/qpe is the query path expression
used to navigate from one element to another, in this case /ownedAttribute. Classifier,
as mentioned earlier in this chapter is a type of element. In the example below, the Classifier
is Port. The reference filterismse : :metaclassName="MD Customization for
SysML::additional stereotypes::ConstraintParameter", followed by
the attribute filter aggregation="composite" and finally the predicate filter, has-
notype.

dim /ownedAttribute[Port|mse::metaclassName="MD Customization for SysML::addition-
al_stereotypes::ConstraintParameter", aggregation="composite",hasnotype]

26 < 3 Qualifiers

4 Query Path Expression
4.1 Query Path Expression Definition

Query Path Expression is an expression that queries the model for model elements and at-
tribute values. It is used in defining Data Sources and SyncTable Schemas. The formal
syntax definition is as follows.

QueryPathExpression ::= (LocalQueryExpression)+ ('@'

ReferenceDecompositionId)?

LocalQueryExpression ::= (('/"'" AttributeId) | ('.' ReferencelId))
Qualifier?

AttributeId = (EcoreImportId '::')? <Attribute>

Referenceld ti= (EcoreImportId '::')? <Reference>

Qualifier = '"['" ClassifierId ('|' AttributeFilter (','
AttributeFilter)*)2 ']'

ClassifierId = (EcoreImportId '::')? <Classifier>

AttributeFilter ::= AttributeId '=' '"' <Expression> '"'

ReferenceDecompositionId refersto ID of a ReferenceDecomposition defined in
ReferenceDecomposition and ReferenceQuery (page 40).

<Classifier>, <Attribute>, <Reference> refer to the corresponding UML
elements, Classifier, Attribute and Reference. The names and their types are defined by a
metamodel (via Ecorelmport (page 20)). In Query Path Expressions we distinguish the
following three types.

* Classifier
A type of an element. For example, a UML model may have elements of type Class.
Class is a Classifier. An element contains subelements which can be of two types: attributes
and references.

* Attribute
A subelement that belongs to the element.

¢ Reference
A subelement that refers to another element.

To illustrate these types and their relations consider the example code below. The code is
a snippet from the UML example model from the MapleMBSE User Guide.

Tip: The model file, UserGuide.uml, can be opened using any text editor. It can be found
in the installation folder <MapleMBSE>/Example/UserGuide, where <MapleMBSE> is
the location of your MapleMBSE installation.

27

28 + 4 Query Path Expression

<packagedElement xmi:type="uml:Class" xmi:id=" vXfgAM MEee6666BhKb4Cg"
name="Classl">
<ownedAttribute xmi:id=" AH4akdBoEee6666BhKb4Cg" name="Propertyl"

ZupperValue
xmi:id=" AHS5BoNBoEee
</ownedAttribu

666BhKb4ACg" value="1"/>

e>

</packagedElement>
<packagedElement

name="Class2" visibillity="private"/>

<packagedElement

i:type="uml:Association"
xmi:id:E_§§§¥§NEEEQQ@@@@?pKQAQqﬁname:"aqqregation_claSSZ_in_claSSl"...>
</packagedElement>

The text representation of the model is written in XML. The model and its content are rep-
resented by XML elements. An element can be defined as an empty element with attributes.

|<element el />

Or if it contrains other elements it can be defined using the start and end tags.

|<element> ... </element>

The classifiers are highlighted in blue: "uml:Class", "uml:Literallnteger", "uml:LiteralUn-
limitedInteger", "uml:Association". The "uml" namespace is defined in the definition of the
Model element, see Getting Started (page 1). Consider the ownedAttribute element

Propertyl in Class1. The attributes of the element are highlighted in green: name, visibility,
aggregation, lowerValue, upperValue. The references of Property1 are highlighted in orange:
type and association. You can see that the values of the references are the IDs of the elements

they refer to.

The names of Classifiers, Attributes, and References can be written with or without Ecor-
elmportld depending on how Ecorelmport was declared. If there is only one Ecorelmport
in a configuration file and it was declared without an ID:

import-ecore "http://www.eclipse.org/uml2/5.0.0,/UML"

Ecorelmportld is not necessary. In this case, a query path expression that queries elements
of a package can be written as follows.

|/packagedElement

If an Ecorelmport was declared with an ID:

‘ import-ecore "http://www.eclipse.org/uml2/5.2.8/UML" as uml

4.1 Query Path Expression Definition * 29

Ecorelmportld must be used to refer to classifiers, attributes, or references defined by the
corresponding model. The same Query Path Expression takes the form.

/uml: :packagedElement

In the following examples we omit Ecorelmportld. The above examples of Query Path
Expressions query all elements in a package. For the above example of a query path expres-
sion, it would include elements of types Class and Association. If we want to specify that
only elements of Class type should be queried we need to specify a Qualifier:

|/packagedElement[Class] |

A qualifier can include one or more FeatureFilters. For example, to query a class inside a
package called Classl, the following Query Path Expression can be used.

|/packagedElement[Class\name="Classl"} |

The examples we have considered so far consisted of single LocalQueryExpressions. Loc-
alQueryExpressions can be combined to query nested objects. Each subsequent LocalQuery-
Expression applies to the result of the previous LocalQueryExpression. For example, to
query attributes (the ownedAttribute elements) inside Class1 inside a package, the following
Query Path Expression can be used.

|/packaqedElement[Class\name:"Classl"}/ownedAttribute |

So far, we have only used attributes in query expressions. To query a type of an ownedAt-
tribute in a class a reference must be used.

|/packagedElement[Class\name:"Classl"]/ownedAttribute.type |

The result of the query is the element that the 'type' reference refers to. For Propertyl, it
would return class Class2. Another way to specify a reference is to add the specification of
ReferenceDecomposition at the end of the Query Path Expression.

/packagedElement [Class|name="Classl"]/ownedAttribute.type @

ReferenceDecompositionId

ReferenceDecomposition is defined in Chapter 6, see ReferenceDecomposition and
ReferenceQuery (page 40) . ReferenceDecomposition is a description of the referenced
object. For display purposes there is no difference between a reference query with and
without the use of ReferenceDecomposition. However, when updating a field specified by
a reference without a ReferenceDecomposition, the updates apply to the referenced object.
Whereas, with a ReferenceDecomposition the updates may change which object the reference
points to. It is not recommended to use references without ReferenceDecompositions. If
necessary, they should only be used in read-only worksheets.

30 <« 4 Query Path Expression

5 Data Source

Data Source defines a set of model elements. A Data Source is combined with a SyncTable
Schema to create a SyncTable for the model elements defined by the Data Source. The
following is the formal definition of Data Source.

DataSource :: = PrimaryDataSource | ChainedDataSource

PrimaryDataSource :: = 'data-source' (ID|'Root'|'ROOTS') '*'?
Qualifier

ChainedDataSource :: = 'data-source' ID '=' DataSource
ObjectQueryExpression

Root is a reserved Data Source name that refers to the top-level model element. The type
of the top-level model element depends on the type of a model. Definitions of the Root Data
Source are based on the type of model, as shown in the Root Data Source

Definition (page 31) table.

Type of Model Root Data Source Definition
UML, SysML, Teamwork Cloud

data-source Root[Model]

Rhapsody data-source Root[REProject]

A ChainedDataSource applies Query Path Expression to the result of the parent Data Source.
Consider the example in the Figure below based on UserGuide.uml model (found in
<MapleMBSE>/Example/UserGuide, where <MapleMBSE> is the MapleMBSE install-
ation directory). The Figure Figure 5.1 (page 31)) shows the relationship between the ele-
ments. For each element its classifier is given in italics. The elements enclosed in boxes
with dashed lines are included in the corresponding data sources defined below.

Root
UserGuide : Model
Packagel : Package
Classes
Class1 : Class Class2 : Class Class3 : Class

Figure 5.1: Relationship between model elements

31

32 < 5 Data Source

* Primary Data Source
The example is a UML model, so the Primary Data Source is defined as follows.

data-source Root[Model]

In the code snippet above, the data-source retrieves the top-level element of the UML user
model (user resource).

* All Primary Data Source

data-source classes*[Class]

In the code snippet above, the data-source retrieves all Classes regardless of their location
inside the resource set. In other words, all Classes are retrieved, whether they are the model,
or outside the model (for example, user resource, project resource, etc. or the model. In the
example above Classl, Class2 and Class3 are retrieved.

This type of Primary Data Source is very useful, however, it should be used only to make
read-only SyncTable (page 47) and ReferenceDecomposition and ReferenceQuery
(page 40)reference-decomposition.

Example for primitive DataTypes:

data-source allDataTypes*[DataType]
iena DataTypesschema {
Typel{

olunn /name as typeName

Synctable dataTypesTable = DataTypesTablecallataTypes>
synctable prop - prop

* Chained Data Source
The following Data Source, called "classes", defines a set of all classes in Packagel. It
is defined by applying an Query Path Expression to a previously defined data source. In
this case, the top-level data source, Root. In the example shown in Figure 5.1 (page 31),
Root is UserGuide.

data-source classes = Root/packagedElement[Package|name="Packagel"]/packagedElement[Class]

6 SyncTable Schema
6.1 SyncTable Schema Definition

A SyncTable schema specifies how model elements are mapped to a logical table. With
data sources explained in Data Source (page 31), model elements are first organized as
trees, and then mapped to tables. Such tree nodes are defined by dimensions in SyncTable
schema, which identifies a model element by key columns. The formal syntax of SyncT-
ableSchema is defined as:

SyncTableSchema ::= 'synctable-schema' ID ('(' SyncTableParam (','
SyncTableParam)* ')')?

'{' TopLevelDimension AbstractDimension* '}'!

SyncTableParam ::= ID ':' SyncTableSchemaId

TopLevelDimension ::= ('record')? 'dim' Qualifier '{' DimensionMember*
Ty

AbstractDimension ::= SuccessiveDimension | DimensionGroup

SuccessiveDimension ::= ('record')? dim QueryPathExpression '{
DimensionMember* '}'

DimensionGroup ::= ('alternative'|'optional'|'group') '{

DimensionMember* '}'

DimensionMember ::= PropertyMapping | ReferenceDecomposition
PropertyMapping ::= AttributeColumn | ReferenceQuery
AttributeColumn ::= KeyAttributeColumn | NonkeyAttributeColumn
KeyAttributeColumn ::= 'key' 'column' ObjectQueryExpression 'as' ID

NonkeyAttributeColumn :: 'column' ObjectQueryExpression 'as' ID

where SyncTableSchemaIdisIDofaSyncTableSchema,and TopLevelDimen-
sion appears first as defined in the formal syntax, and we need to put a qualifier to specify
what model element types are selected, then SuccessiveDimension follows in which
we put a Query Path Expression to query what model elements are selected as dimensions.
In this chapter, we explain how to specify SyncTable schemas through examples.

33

34 « 6 SyncTable Schema

6.2 Examples of SyncTable Schema

First, we show a simple SyncTable Schema as follows:

synctable-schema PkgCls {
dim [REPackage] {
key column /name as PkgName
column /description as PkgDesc

record dim /nestedElements[REClass] {
Key column /name as CLlsName

}

;

Here we define a SyncTable Schema with an ID called PkgC1s and it consists of two Di-
mensions. [REPackage] in the top level dimension means it picks up REPackage
model elements, and it must be consistent with that in data sources. The next dimension
picks up REClass elements in nestedElements feature of the top level dimension.
By applying this schema to Pkgl, Pkg2 of the data source having Figure 5.1, we obtain
two trees as shown in Figure 6.1, where Pkgl and Pkg2 belong to the top level dimensions;
and Cls1 and Cls2 belong to the next dimensions.

Pkgl Cls1

Pkg2 Cls2

Figure 6.1: SimpleTree

6.3 Mapping the Attribute Values of the Model Elements
to the Columns
The trees in the example above are translated into tables by the column definitions. The top

level dimension has PkgName and PkgDesc columns, and they are filled with the QPEs
of /name and /description, respectively. And the next dimension have C1sName

6.4 Mapping the Dimensions to the Records <+ 35

column, which is filled with the QPE of /name. Then the tree in Figure 6.1 is translated
to:

Pkgl | PkgDescl |Clsl
Pkg2 |PkgDesc2 |Cls2

Figure 6.2: SyncTable From Simple Tree

More formally speaking, each path in the trees is translated into record, and then we have
two records from the paths of Pkgl-Cls1 and Pkg2-Cls2. Note that synctable schema de-
termines all of the columns in a static way. They are, in this example, PkgName, PkgDesc,
and C1sName, and the number is three.

6.4 Mapping the Dimensions to the Records

Let us look at how dimensions are mapped to records in more detail by comparing with the
example below. The only difference from the previous example is the record keyword
in the top level dimension highlighted with bold font.

synctable-schema PkgCls {

dim [REPackage] {
key column /name as PkgName
column /description as PkgDesc

}

record dim /nestedElements[REClass]{
key column /name as ClsName

h

If any other conditions are the same as the above, the trees generated by this schema are
exactly the same as in Figure 6.1. However, because the top level dimension has a record
keyword, the table has more records as shown in Figure 6.3. The added records are the first
and third rows, which come from the top level dimension. Note that the last dimension (in
this example, that is the one corresponding to Cls) always creates records even if it is
missing. In this table, the rightmost column in the first and third rows is specially treated
as EMPTY. They will be shown as blank cells with light gray backgrounds, and distinguished
from the usual blank cells

36 <« 6 SyncTable Schema

Pkel | PkgDescl
Pkgl | PkgDescl [Clsl
Pke2 | PkgDesc2
Pkg2 | PkgDesc2 [Cls2

Figure 6.3: SyncTable From Simple Tree (add record keyword to top level Dimension

Note that each record corresponds to one model element. In this example, the first record
corresponds to Pkgl, and the second one corresponds to Cls1 while the previous example
does not have any records corresponding to Pkgl nor Pkg2. Therefore, in this example you
can add or delete packages by adding or removing a row while in the previous example you
cannot. In this sense, record keyword plays a vital role that determines which model elements
can be added or deleted by users.

6.5 Alternative and Group Dimensions

Next, we move on to how to organize tree structures by using the following example model.
For the sake of simplicity, we denote model elements with lowercase with numbers (e.g.
al) and its types with uppercase (e.g A) in this example.

do
al bl
b2

cl ¢ d1

Figure 6.4: Simplified Model Number Two: Using Alternative and Group

6.5 Alternative and Group Dimensions « 37

Let us consider the following configuration:

synctable-schema alternativeExample{
dim [A] {
key column /name as Aname

alternative {
record dim /nestedElements[B] {
key column /name as Bname
h

record dim /nestedElements[C] {
key column /name as Cname
¥

record dim /nestedElements[D] {
key column /name as Dname
h

It generates a tree as show in Figure 6.5.

The top level dimension selects type A by [A], and then the root of the tree is al. In the
following dimensions, it selects /nestedElements [B], /nestedElements[C],or
/nestedElements [D] because these are in alternative { ... } clause. That
means that if /nestedElements [B] is matched, the second dimension is used; if
/nestedElements [C] is matched, the third dimension is used; and if /nestedEle-
ments [D] is matched, the forth dimension is used. Therefore, dO, the first model element
in the nestedElements feature, is applied to the forth dimension; b1l and b2 are applied to
the third dimension; and c1 is applied to the forth dimension. And then, we obtain a tree
shown in Figure 6.5.

— do
o
— b2
— cl

Figure 6.5: Tree From Simplified Model Two

This tree will be turned into a table as shown in Figure 6.6. It has four columns consisting
of Aname, Bname, Cname, and Dname. Since the top level dimension does not have a

38 « 6 SyncTable Schema

record keyword, it does not have a record of al. Instead it creates four records for b1,
b2, c1, and d0 corresponding to the tree nodes under "al" in Figure 6.5. Notice that the
record for ¢l in the third row fills Aname and Cname columns, and Bname column is
specially treated as VOID, which looks blank but filled with thick gray background. Likewise,
the second (Bname) and third (Cname) columns in the forth row are also filled with VOID.

al | bl

al | b2

al cl

al dd

Figure 6.6: Table Made From The Tree of Simplified Model Two

Let us move on to the next example using group as shown below:

synctable-schema groupExample {
dim [A] {
key column /name as Aname
}

alternative {
record dim /nestedElements[B] {
key column /name as Bname

}
group {
dim /nestedElements[C] {
key column /name as Cname
record dim /nestedElements[D] {
key column /name as Dname
¥
}

}

It generates a tree as shown in Figure 6.7.

The difference is that now d1 belongs to ¢l instead of al because the above configuration
says B or C followed by D rather than B, C, or D. It means something like (B or (C, D)) in
contrast with (B or C or D). That is, group keyword is something like parentheses in dimen-
sion definitions and alternative is like the or operator.

6.5 Alternative and Group Dimensions * 39

Then this tree is translated to a table as shown in Figure 6.8. Since the dimensions of B and
D have a record keyword, it creates three records: b1, b2, and d1, corresponding to the first,
second, and third rows. The third and fourth columns that follow after b1 and b2, in the
first and second rows, are EMPTY and the second column in the third row is VOID in this
table.

al bl

b2

cl dl

Figure 6.7: Another Tree Made From Simplified Model Two

al |bl
al | b2
al cl |dl

Figure 6.8: Another Table Made From Simplified Model Two

Since group keyword combines dimensions in alternative blocks, using it out of alternative
does not give any effects. For example,

dim ... {}
dim ... {}
dim ... I}
and
dim ... {}
group {
dim ... {}
dim ... {}
h

give the same results.

40 + 6 SyncTable Schema

6.6 ReferenceDecomposition and ReferenceQuery

Mapping reference values with ReferenceDecomposition and
ReferenceQuery

ReferenceDecomposition is used for presenting references of model elements. The
examples so far edit model elements themselves by querying them with QPEs, where we
can track references as well. That means we always change values of such model elements
instead of references to model elements.

First we specify the formal syntaxes of ReferenceDecomposition and Refer-
enceQuery as below:

ReferenceQuery = ('key')? 'reference-query' ObjectQueryPath
ReferenceDecomposition ::= 'reference-decomposition' ID '='
[ReferrableSyncTable] '{' ForeignColumn* '}'
ForeignColumn ::= KeyForeignColumn | NonkeyForeignColumn
KeyForeignColumn ::= 'foreign-key' 'column' [Column] 'as' ID
NonkeyForeignColumn ::= 'foreign' 'column' [Column] 'as' ID

InReferenceDecomposition,you should specify all of the key columns in the referred
table as KeyForeignColumn (that is, you should specify "foreign-key" for such key
columns) because we should identify a record by such key columns. If the configuration
does not satisfy this condition, it is not guaranteed to identify a unique record to make a
reference.

ReferenceDecomposition by Example

We use the following code snippet to explain ReferenceDecomposition.

This configuration transforms the target model in Figure 6.9 into a table as shown in
Figure 6.10.

This example first introduces the TypesByName synctable-schema, which itemizes
all of the types as TypeName, and At t sByName refers to that type by the t ype feature
of REAttribute. Note that At t sByName takes the tps argument of TypesByName,
and in Line 7, the attributes synctable takes t ypes as an argument and then the at -
tributes synctable uses t ypes synctable to refer to types by the ReferenceDecom-
position in Lines 25-28. Let us look into these in the following section.

6.6 ReferenceDecomposition and ReferenceQuery ¢

41

REProject
2

Structure
&

Pkgl

Cls1 I

lypel

Attl
Pig? Att2 |
Cls2 I

Units Att3

Typel
Figure 6.9: Target Model
Pkg Cls1 Attl =

Pkg Cls1 Att2
Plkg. Cls2 Att3

Figure 6.10: Illustration of ReferenceDecomposition

References by Dimensions or ReferenceQuery

Next, let us see how we identify references. As show in Line 25 of

(page 40).

42 + 6 SyncTable Schema

, we write reference-query QPE @ name in the dimension. Let us look in the part
in the example of the previous section:

o]
1

dim /nestedElements[REAttribute] {
key column /name as AttName
reference-query .type @ typedecomp
reference-decomposition typedecomp = tps {
foreign-key column TypeName as Type
h

4

B B B RS BRI R P

[N I T]

}

In this example, we use the t ype feature of REAttribute as a reference to be decom-
posed. Thus, this reference refers to a type identified by the TypeName column of tps
table. This dimension has At tName and Type columns and At tName column is associated
with name feature of REAt t ribute of this dimension, and Type column is used to refer
to type (see the reference—-query) by TypeName column of tps table.

Otherwise, if the reference is associated with a dimension, we put @ name after the dimen-
sion definition as the example below:

dim [REInstance] { .. }

dim .ctherClass[REClass] @ cls2 {
reference-decomposition c¢ls2 = clsThl {
foreign-key column PkgName as PkgName2
foreign-key column ClsName as ClsName2

column /description as ClsDesc2

where we use c1s?2 as the name of the reference. And in the following reference-de-
composition cls2, weuse PkgName and C1lsName columns of c1sTbl to present
that reference. Therefore, this dimension has otherClass reference of REInstance
(in the previous dimension), which refers to REClass class identified by PkgName
(propagated by PkgName?2 column of this dimension) and C1 sName (propagated by
ClsName?2 column, likewise) columns of c1sTb1. Note that c1sTb1 is a parameter of
the synctable-schema. Since PkgName and C1sName are key columns, we specify
the foreign-key keyword in the reference decomposition. In addition, we can edit de—
scription of the reference via Cl1sDesc?2.

6.7 Key Columns Defined in SyncTable Schema

Ina synctable-schema, we need to specify key columns to identify the recode by such
key columns. So in every dimension, we need at least one key column and all of the model
elements associated with this dimension must be uniquely identified by the defined key
columns. Key columns in dimensions are one of the followings:

1. Columns defined by key column

6.8 Using Default Value Generation in a Column + 43

2. All of foreign-key columns in the ReferenceDecomposition that uses references by
key reference-query or dimensions. If you use reference-query without the
key keyword, such foreign-key columns are not key columns.

6.8 Using Default Value Generation in a Column

After you assign a name to Attribute Column use '=' and then enter the type of value you
want to generate, as in the example below. Here the attribute column has been assigned the
name PropertyName, followed by ‘=", then the text value and Sequence number .

synctable-schema BlockSchema {
record dim [Package] {
| key column /name as packageName
column /visibility as pkgVis = "private”
}

record dim /packagedElement[Class|mse::metaclassName="SysML::Blocks::Block"] {
key column /name as blockName = ZUUID
}

dim /ownedAttribute[Property]{
key column /name as propertyName = "R" ¥SEQID
}

Limitations

Default value generation column doesn't work in the following cases:
* In root dimension key column
* In alternative, group, optional key columns

* used is reference decomposition any column

Data Insertion Order with the Default Column

If you have default value generation in the sync scheme then order to enter information into
the cells is important here let's see the example We have a scheme in which record root di-
mension is package and visibility, visibility has default value next we have record dimension
for Class which has default value generation after that we have record dimension for the

property.

44 < 6 SyncTable Schema

synctable-schema BlockSchema {
record dim[Package]{
key column /name as packageName
column fvisibility as pkgVis="private”

record dim /packagedElement[Class\mse: :metaclassName="5ysML: :Blocks::Block™]

{

key column /name as blockName=XUUID

record dim fownedAttribute[Property]q{
key column /name as propertylame = "R" ¥SEQID
h

Example: Create a Package that has Class and Property

This example illustrates the importance of the order of entry of data with default value
generation.

1. Enter the Package name. From the table below you can see that the Visibility has been
automatically created.

2. Enter the same Package name again. Notice the Class column has been automatically
filled.

3. Next, try to create the property by entering the package name. Notice that MapleMBSE
creates a new Class. If you repeat this, MapleMBSE will create a another new Class.

4. This time, enter the Class name first.

5. Next, enter the Package name. Notice that a property has been created.

Package private
Package private |beaaefaf-e74b-41c7-8502-b72989b72f2b
Package private |2e664310-7a99-4df7-9ddb-f9c7559e4048

7 2e664310-7a99-4df7-9ddb-f9c755924048
Package private |2e664310-7a99-4df7-9ddb-f9c755%4048 [R1

Example: Create a Package and Class with Alternative Dimensions

In this example, a second dimension has default values but not a record dimension. After
that, there are alternative two dimensions.

6.8 Using Default Value Generation in a Column + 45

synctable-schema B2Schema {
record dim [Package] {
key column /name as packageName

}

dim fpackagedElement[Class] {
key column /name as blockName =XUUID

alternative{
dim fownedAttribute[Port]{
key column /name as portName
column fvisibility as pVis

}

dim fownedAttribute[Property]{
key column fname as propertyName
column /visibility as proVis

}

1. Enter the Package name. The Class and other fields are grayed-out so the package has
been created.

2. Enter the Package name again. Notice the Class was not created, as shown in the image
below.

Package
Package

3. To create the Class and visibility, you have to enter the Property or port name. After this,
the Class will be created as shown below.

Package
Package 7e53a36b-63ba-4068-8b72-chedfOclod4d |port [public

46 + 6 SyncTable Schema

7 SyncTable

A SyncTable is an intermediate structure created in the first step of converting model
data into a table from shown in an Excel spreadsheet. The definition of a SyncTable
consists in applying a SyncTable schema to a Data Source. The formal syntax of a
SyncTable definition is as follows.

SyncTable ::= 'synctable' ID '=' SyncTableSchemald '<' DataSourceld
'>' ('(' SyncTableId (',' SyncTableId)* ')')?

In the table 'synctable' ID '=' SyncTableSchemald '<' DataSourceld '>' ('(' SyncTableld
("' SyncTableld)*")')? (page 47).

SyncTableSchemalId isan ID ofa SyncTableSchema.

¢ DataSourceld is an ID of a DataSource.

* SyncTableld is an ID of a SyncTable.

47

48 < 7 SyncTable

8 Laying out SyncViews

This chapter describes how SyncTables are presented as SyncViews. All of the SyncViews
must be laid out in some worksheet in a workbook. The rest of the sections are organized
as 1) how to set up worksheets in a workbook; 2) how to lay out SyncTables in a table; and
how to lay out SyncTables in a matrix.

8.1 Setting up a Workbook and Worksheets

When MapleMBSE opens a model, it assigns one workbook to the model, and in Workbook
Instance, we specify all of the worksheets managed by MapleMBSE. In each configuration,
one and only one Workbook instance must be specified.

The example below comes from Example/UserGuide.MSE, and it defines all of the
worksheets.

workbook {
worksheet AllElements(allElementsTable)
worksheet PackageClassProperty(classesInPackage) {label = "NestedElements"}
worksheet PackageClass(classesTable)
worksheet Horizontal(classesInPackage) {label = "HorizontalTable™}
worksheet Dependencies(dependenciesTable,dependentTable,supplierTable) {label = "Matrix"}
worksheet DependenciesSheet(dependenciesTable)
worksheet Packages(packagesTable)
worksheet NestedPackageClass(nestedPackageClassTable) {label = "AlternativeGroups"}
worksheet UnmappedFields(nestedPackageClassTable)

AlElements NestedElements PackageClass HorizontalTable Matrix ~ Packages AlternativeGroups | UnmappedFields ~¥3J

In the example shown “workbook’ is used to represent the arrangement of worksheets as
shown, AllElements is the name of the worksheet template and allElementsTable is the name
of the synctable that is created. By default, a worksheet is created with the name AllElements
containing the information from the corresponding worksheet-template. MapleMBSE allows
the user to create a name for the worksheet manually by using the ‘label’ attributes as
shown in the above example.

Note: When a worksheet template is created with more than one parameter they should be
separated with ,” as shown above for the creating a Dependencies worksheet.

If lazy-1load is specified before worksheet, MapleMBSE will load syncviews of that
worksheet when that worksheet is activated. By default, thay are loaded at the startup and
then the name of worksheet-template and its parameters follow. This means the
worksheet will be defined by the specified worksheet-template. The details of
worksheet-template are explained in the next section.

If the worksheet declaration has label="XXX", MapleMBSE regards "XXX" as the name
of the worksheet. Otherwise, the name, worksheet-template is used as the name of
the worksheet. For example, A11Elements will be the name of the worksheet defined by

49

50 < 8 Laying out SyncViews

worksheet AllElements(allElementsTable). If the Excel template has the
worksheet with the same name, MapleMBSE will use this worksheet to initialize the syn-
cviews of worksheet-template. Otherwise, MapleMBSE will create a new worksheet
with the same name.

8.2 Worksheet Template and View Layout

A worksheet template is used to define how a SyncTable should be represented in the Excel
worksheet. In a worksheet template, we can specify one or more ViewLayouts, each of
which can be a table view layout or a matrix view layout, in the following subsections re-

spectively.

The formal syntax of worksheet template is as follows.

WorksheetTemplate = 'worksheet-template' ID ' (' WorksheetTemplateParam
(',' WorksheetTemplateParam)* '")'
'{' ViewLayout* '}'

ViewLayout L= TableViewLayout | MatrixViewLayout

where ID means the name of the worksheet template and should be referred by worksheet
definitions explained in the previous section.

Important: Do not use an A/l Primary Data Source (page 32) directly in the workbook as
WorksheetTemplateParam;

Table View Layout

Table view layout allows the user to define how the contents of the model should be displayed
in the table. It has two possible arrangements: vertical or horizontal. The syntax for table
view layout is as show above. To define a table layout: you must specify the arrangement
of the table, the cell address to define the location of table in Excel, and the order of the
fields. A column can be populated with either mapped or unmapped fields; a mapped field
displays the attributes or value assigned to it whereas an unmapped field is used to insert a
blank column within the table. Based on how fields are declared in the synctable schema
as key column or column inside the view layout they are declared as key field or field re-
spectively. It is necessary to provide the column type as string or integer for every field that
is created except for the unmapped field.

The formal syntax of table view layouts is as follows.

TableViewLayout ::= ('vertical' | 'horizontal') 'table' ID at'
CellAddr
'=' WorksheetTemplateParam '{"'
('"import-order' INT)? & ('enable-import'

8.2 Worksheet Template and View Layout + 51

BoolType)?
ViewColumn* (SortKeys)? '}'

ViewColumn ::= MappedViewColumn | UnmappedViewColumn

MappedViewColumn ::= KeyViewColumn | NonkeyViewColumn

KeyViewColumn 1= 'key' ‘ref’? 'field' [KeyColumn] ':'
ViewColumnType

NonkeyViewColumn = ‘ref’? 'field' [Column] ':' ViewColumnType

UnmappedViewColumn ::= 'unmapped-field'

ViewColumnType : ('String' | 'Integer' | 'Double')'[]'? (';'
'delimiter' '=')? & (';' 'quote' '=' STRING)?

The following code snippet comes from UserGuide.MSE which defines a table view layout.

worksheet-template AllElements(cls:AllElementsTable) {
vertical table tabl at (3,2) = cls {
key field PackageName : String
field PackageVisibility : String
key field TopClassMame : String
field TopVisibility : String
key field PropertyName : String
field PropertyVisibility : String
field AggType : String
field PropertyTypePackage : String
field PropertyType : String
field PropertyTypeVisibility : String
sort-keys PackageName, TopClassName, PropertyName

In the example shown above, a worksheet template with ID A11Elements is created for
a synctable-schema, Al1ElementsTable thatis assigned to a parameter c1s.
Line 2 defines that the table is arranged vertically and (3, 2) means it should be displayed
from Row 3 and Column B in Excel as show in the figure below. Line 3 to line 12 in the
example defines the order in which fields have to be displayed in Excel, shown as Table
View in the figure. In line 3 in the sample, key fieldisused for PackageName because
it was specified as key column in the synctable schema for A11ElementsTable.
Column type for every field is provided as shown from line 3 to line 12, in the example
shown String is the type for all fields. To specify type integer, use Int instead of
String. sort-keys are used to indicate the columns that should be sorted in ascending
order when model data is loaded or when new data is added to the table.

Predefined Row in the figure below denotes that the Excel sheet can be formatted based on
user preference before the model is loaded in the Excel sheet.

52 « 8 Laying out SyncViews

Predefined

A B © D E F G H
1
2 Package Name P?c_ka_g_e Class Name 5'_3_55__ Property Name Vro_p?r_ty (BT | 2| iy Ty_p_e“
3 Packagel public
4 Packagel public Class1 public
5 Packagel public Class1 public Propertyl protected |[shared Packagel Class2 private
6 Packagel public Classl public Property2 public composite [Packagel Class3 public
7 Packagel public Class2 private
8 Packagel public Class3 public
9
10
1n

Table View

Matrix View Layout

A matrix view layout consists of three parts, row index table view part, column index table
view part, and matrix part, as shown in the following example:

Column
Index Table

Packagel
Packagel
Packagel

Dependent Classes Package Naml

Package Mame Class Name

Yesst

PackEel Class1 Y
Packagel Class2
Packagel Class3

S

Row Index
Table

The formal syntax of matrix view layout is as follows.

MatrixViewLayout ::= 'matrix' ID 'at' CellAddr
'=' [WorksheetTemplateParam] '{'
("import-order' INT)? &

('enable-import' BoolType)?

ViewColumn

8.2 Worksheet Template and View Layout * 53

MatrixRowIndexViewLayout &
MatrixColumnIndexViewLayout

vy

MatrixRowIndexViewlayout ::= 'row-index' '=' [WorksheetTemplateParam]
'{' ViewColumn* (sortKeys=SortKeys)?
'}'
'column-index'
[WorksheetTemplateParam]

'{' ViewColumn* (sortKeys=SortKeys)?

MatrixColumIndexViewlayout : :

l}l

Row and column index tables identify which cell in a matrix should be selected to show a
record of the synctable. The following code snippet comes from UserGuide. MSE which
defined matrix view layout.

1= worksheet-template Dependencies(mat:DependenciesTable,tabr:DependentTable,tabc:SupplierTable) {
matrix Matrixl at (5,4} = mat {
const-field "x"
row-index = tabr {
key field DependentPackageName : String
key field DependentClassName : String

sort-keys DependentPackageName, DependentClassName

[T R (R R S TTR]

h

column-index = tabc {
key field SupplierPackageMame : String
key field SupplierClassMame : String

sort-keys SupplierPackageMame, SupplierClassName

' ¥
(RS TN T)

et

In this example, Lines 2 to 16 defines matrix layout with the name of Matrix1 created by
mat, that is DependenciesTable (see parameters of Dependencies). const-field
means a matrix cell should be filled with the specified value if and only if the corresponding
record exists. You can specify some column instead of const-field. For example, if
you specify field DepName : String, you can edit DepName in matrix cells.
However, you can specify only one field for a matrix view layout.

Lines 4 to 9 define a row index table, and Lines 10 to 15 define a column index table. Using
this configuration, DependentTable (row index table) needs to have DependentPack—
ageName and DependentClassName columns, and SupplierTable (column index
table) needs to have SupplierPackageName and SupplierClassName columns,

and finally, DependenciesTable (matrix table) needs to have all of the columns, those
are DependentPackageName, DependentClassName, SupplifierPackage-

54 « 8 Laying out SyncViews

Name, and SupplierClassName. In DependenciesSheet, we can show Dependenci-
esTable in a vertical table as below:

Dependent Classes *
Package Name ‘ Class Name Package Name Class Name

Package 1 Class1 Package 1 Class?2
Package 1 Classl1 Package 1 Class3

A synctable used to present in a Matrix must have all of the same key columns of row and
column index tables. In this example, DependenciesTable (synctable to be shown in
a matrix) must have DependentPackageName and DependentClassName that are
the key columns of row index table (DependentTable), and SupplierPackageName
and SupplierClassName that are key columns of column index table (SupplierT-
able). Notice that all of the column names must be unique.

	MapleMBSE 2021 Configuration Guide
	Contents
	Introduction
	1 Getting Started
	1.1 Introduction
	1.2 Overview of MapleMBSE Mapping
	1.3 MSE Configuration Editor
	1.4 Creating a Configuration File
	1.5 An Introductory Example

	2 Configuration Language Fundamentals
	2.1 Notation
	2.2 Overview of an MSE Configuration File
	2.3 EcoreImport

	3 Qualifiers
	3.1 Attribute filter
	3.2 Reference filter
	3.3 Predicate filter
	Defining the Predicate
	Creating the Filter Logic for the predicate
	Unary Predicates
	NOT

	N-ary Predicates
	OR, AND
	OR1
	Propositions
	Attribute Proposition
	Reference Proposition
	Subset Proposition
	Inequality Proposition
	Counting Proposition

	Using the Predicate Filter

	4 Query Path Expression
	4.1 Query Path Expression Definition

	5 Data Source
	6 SyncTable Schema
	6.1 SyncTable Schema Definition
	6.2 Examples of SyncTable Schema
	6.3 Mapping the Attribute Values of the Model Elements to the Columns
	6.4 Mapping the Dimensions to the Records
	6.5 Alternative and Group Dimensions
	6.6 ReferenceDecomposition and ReferenceQuery
	Mapping reference values with ReferenceDecomposition and ReferenceQuery
	ReferenceDecomposition by Example
	References by Dimensions or ReferenceQuery

	6.7 Key Columns Defined in SyncTable Schema
	6.8 Using Default Value Generation in a Column
	Limitations
	Data Insertion Order with the Default Column
	Example: Create a Package that has Class and Property
	Example: Create a Package and Class with Alternative Dimensions

	7 SyncTable
	8 Laying out SyncViews
	8.1 Setting up a Workbook and Worksheets
	8.2 Worksheet Template and View Layout
	Table View Layout
	Matrix View Layout

