MapleMBSE 2021.0 Application Guide

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2021

MapleMBSE 2021.0 Application Guide

Contents

INEOAUCLION .uuiitiie it et e e e e e e e et e et e s e e eanns vii
1 Blocks in MapleMBSEoiiniiiiiiiii e 1
1.1 BIOCKS TabBIC ..vvniieiiieiieie e e e e e e ees 1
Creating a BIOCKoouiiiiiiii e 2

1.2 Creating Association, Aggregation and COmpOSItionccceueevneernerenennnnns 3
1.3 Creating Direct Association, Aggregation and Composition 4
1.4 Block Generalization, Values and Operationcoeevveivneiineiineinneinnnnenns 6
1.5 Constraint BIOCKScivuiiiniiieeiiiie e e e e e e 8

2 The Fitness Tracker Modelooiviiiiiiiiiiiiie e 11
2.1 PACKAZES .vviiniiieie e 11
2.2 Requirements Tableoivuiiiniiiiiiie e 12
Creating REqUITEMENTSivviiniiieiieie e e e e e e e e e aaneeans 12

2.3 USE Case TabIE ...vvuieiiiiiieii e 14
Creating a Use Case Tablec.coeviiiiiiiiiiiiiei e 15

2.4 BIOCKS Table ...cvuiiiiiiiiei e e 16
BIOCKS TTCE ..evniiiieiie ettt et e e e e e e e e 16
Block Satisfaction MatriXevveeiineiineiieeieiieei e e eee e e eaeeens 23

2.5 Internal BIocks Tableoivuiiiniiiiiiiiie e e 23
Block Property Tableoivuiiiiiiiiiiei e 24
Block Connector Tableevuiieiiiiiiieii e 25
Property Connector Tablec.ooiiviiiiiiiiiie e 26

2.6 ACtIVItY DIQZIAMivniiiiiiiie e e e e e e e eans 27
Creating Actions for an ACHIVITYvivuiiiniiieiiee e e e eaens 28

3 State Machine DIaGramooeiuiiiniiiieiieii et e et e e e e e e e e eaeaes 35
3.1 How to Create a State Machine Diagramcoovvvviiiiieiiiniineiineeinnn. 36
3.2 How to Create States and Transitionsoeeueiveinieinniinnrierineiieennenn 36
3.3 How to Create Triggers with Signal Eventsc.ccoveivviiiiiiiiiieieinnn, 37

4 Count Down Timer Modelcccoeiiiiiiiiiiiiie e 39
4.1 Requirements Tablecoiuiiiiiiiii e 40
4.2 USECASE TaADIE ...oevniieiiiiiii e et e 40
4.3 CountDownTimer Tablecccviiiiiiiiiiiieii e 41
Signal TabIE ...uuiiniinii e 42

Time Event Tableccouoiiiiiiiiiie e 43

4.4 Timer Behavior Tablecccooeiiiiiiiiiiiiiie e 44
4.5 StateMachine Properties Tableccoiviiiiiiiiiiiiiiiiiieiie e, 45
Transition Tableeiuiiiiiiii et 46

4.6 ActiVityNOdeTableccvuiiiiiiiiiiie e 47
Opaque Behavior Tableviviiiiiiiiiiieie e 48
Activity ObjectFlow Tableoovniiiiiiiiiieiie e 49
Activity ControlFIow Tablecoiviiiiiiiiiie e 49

4.7 State Behavior Tableccouviiniiiiiiie e 51

il

iv ¢ Contents

State Behavior ControlFlow Tablec..cociiiiiiiiiiiiiiini 52

State ControlFlow Condition Tableccooveeiiiiiiiniiiiiiiiiniiniiecii 53

5 Turbofan Engine Modelccoiiiiiiiiiiiiiii e 55
RN B T (T 11T (o) o PN 55
5.2 Turbofan Modeloiiniiii e 55
5.3 REQUITEIMEILS ..eevuiiiiiiiieiii e ettt ettt et e e e e e 55
54 ValUCTYPE vt 56
5.5 Constraint BIOCKScuiiiiiiiiiii e 56
5.6 System Modelcooiiiiiiiiiiii e 56
5.7 RESUILS .o 56
S8 REIEIEIICES ... ieviiiiieei e 57

6 UAV MOUEL ...ttt et e e anns 59
LT I T (T 11T [) o PN 59
6.2 Analyze Stakeholder Needsc..ooouuiiiiiiiiiiiiiiiii e 59
6.3 Mission ReqUITEMENtceuuuiiiiniiiiiiiii i 60
6.4 System ReqUIreMENtSsc..veeuuniiiiiiiiiiniii e 60
System Behavioriiiuiiiiiiiiiiii 60
Weight EStIMationc...couuiiiiiiiiiiii e 60

Wing Area EStIMationcouiiiiiiiiiiiiiiieii e e e e 61

6.5 REIETEIICES ... evviiiiieii e 61
TEMEA TemPIateccouniiiiiiiiiiii et e 63
8 B 0 (0T 11T (o) o PN 63
T2 FME A e 63
7.3 Recommended ACLIONvieuuiiiiiiii et 64
T4 REIETEIICES ... ivvieiii et 64

8 Interface Definition Templateoooouiiiiiiiiiiiiiiin e 65
T I 8 (T L1 T [) o PN 65
8.2 The InterfaceRequirements MatriXcc.viiuineiiiniiiiniiiiiniiin e, 66
8.3 ComponentsInteractionTablecccoviiiiiiiiiiiiiiniiin e 66
84 REIETEIICES ... eevieiiieei e e 67

O COSt ANALYSIS ..ovueiineiieiiee ettt aas 69
L2 B 1 (T 11T (o) o PN 69
0.2 RESUILS ..ttt et e 69
9.3 VISUAIZALION ...cevuniiiiniiii et 69
10 Variant Management Templateoveiuiiiiiiiiiniiiinie e 71
10,1 INtrOAUCHION ..oveniineiie et e e e e e e e e e e e eannas 71
10.2 FEAtUTEMALIIX ...vvuieneiieiie et et et et e e et e e e et e e e e e e e eaeennas 71
10.3 VariantCheckTablecouviiiiiiiiiieie e e 72
10.4 RELEIEIICES ..evuneiiiieiiie ettt ettt e 72

11 Default Value Generationc..oveeuiriiiiniiiiniiiieiiie e 73
L I 65 4o 1817 10 s PP 73
11.2 Generating the Default Valuesccoooeeiiiiiiiiiiiiiiii e, 73

12 INStAnCe TADIEoinieiie e 75

Contents ¢ v

12,1 INErOAUCHION ...eiiiiiiite ettt 75
12.2 The MatrixTemplate Worksheetccooeiiiiiiiiniiiiniiiiiincee 75
12.3 Viewing Information in the MatrixTemplate Worksheet as an Instance
TADIE .o e 78
13 Spacecraft Modelcoouiiiiiiiiiiii e 79
131 INrOAUCHION ...eiiiiiiie ittt 79
13.2 SPCUseCase TemPlateccceueieniieniiiieieeieeie e e e eens 79
13.3 SPCValueType Templatec.oeeeuiiiiiniiiiniiiiiiiiiecin e 79
13.4 SPCStructure templatec.oveiiiiieiiniiiiniiiei e 80
14 Telescope MOdElcouuiiiiniiiieiie e 83
14,1 INtrOUCHION ...eivtnieiin ettt 83
14.2 TMT Predicate Templatec..oeeuuiiiiniiiiineiineiiineiiie e 83
14.3 TMT Activity TemMPIatec..oeeeuniiiiniiiiieiieii e 84
14.4 Signal INterfaceocouuiiiiiiiin e 85
14.5 TMT OBSE Templatecccuueiiiniiiiniiiniiineeiece e 85
14.6 TMTINSTANCE ...ceutiiniiineii ettt et 85
15 Turbojet Model: Formula Evaluationccceceuiiiiiiiiiiiiiiiniiiniinecieeenn, 87
15,1 INrOAUCHION ...eiiiiiiii it 87
15.2 Instance Specifications and Constraint Propertiescccoceeveieineennnenn. 88

15.3 INSANCE MALIIX . .vivieiietii it ettt ettt e e nenenas 89

vi ¢ Contents

Introduction

MapleMBSE Application Guide Overview

MapleMBSE™ gives an intuitive, spread-sheet based user interface for entering detailed
system design definitions, which include structures, behaviors, requirements, and parametric
constraints.

The Application directory of your MapleMBSE installation contains six applications. Each
of the chapters in this guide corresponds to one of the applications:

Chapter

Application Name

Description

1

Working With Blocks in MapleMBSE

The first application uses the
TWCSysML-Structure.mse file to demonstrate
the use of blocks in MapleMBSE

Creating a Model in MapleMBSE (Fitness
Tracker Model)

This model uses the TWCSysML-Model.mse
and TWCSysML-ModelActivity.mse files to
demonstrate how to create a model in
MapleMBSE which can be exported to the
Teamwork Cloud

Working With State Machine Diagrams in
MapleMBSE

The example in this chapter defines how to
create states, define their transitions and the
events that trigger these transitions using
MapleMBSE.

Count Down Timer Model

This chapter contains a model of Countdown
Timer that uses TWCSysML-Timer.mse to
create a simulatable Timer model.

Turbofan Engine Model

This example model is used to identify design
points of a turbofan engine. MapleMBSE and
Cameo Systems Modeler™ were used to create
a turbofan example model

UAV Model

This model uses Object Oriented System
Engineering Methodology (OOSEM) to design
a conceptual model of an Unmanned Aerial
Vehicle (UAV).

FMEA Template

This model is used to perform FMEA analysis
by accessing SysML model elements from the
Teamwork Cloud server.

Interface Definition Template

This template is used to show details on the
interfaces between the systems

Cost Analysis

This example illustrates cost analysis applied
to materials used in a turbofan engine.

vii

viii ¢ Introduction

10 Variant Management Template This example illustrates how to identify the
multiple variants in the product line and their
dependencies, to manage complexity.

11 Default Value Generation The model in this chapter is used to illustrate
the use of the Default Value Generation feature.
12 Instance Table Template This example illustrates how the InstanceTable

template makes it easier to filter and review
information on instances, gained from the
MatrixTemplate worksheet.

13 Spacecraft Model This example illustrates the use of MapleMBSE
to explore this SysML-based model.

14 Telescope Model This example provides a different view of the
model and illustrates the use of Predicate
Filtering.

15 Turbojet Model This example illustrates the use of the Formula
Evaluation feature in the context of an instance
matrix.

Related Products

MapleMBSE 2021 requires the following products:
¢ Microsoft® Excel® 2010 Service Pack 2, Excel 2016 or Excel 2019.

* Oracle® Java® SE Runtime Environment 8.
Note: MapleMBSE looks for a Java Runtime Environment in the following order:
1) If you use the -vm option specified in OSGiBridge.init (not specified by default)

2) If your environment has a system JRE (meaning either: JREs specifed by the environment
variables JRE HOME and JAVA_HOME in this order, or a JRE specified by the Windows
Registry (created by JRE installer)), MapleMBSE will use it.

3) The JRE installed in the MapleMBSE installation directory.

If you are using IBM® Rational® Rhapsody® with MapleMBSE, the following versions
are supported: Rational Rhapsody Version 8.15, 8.3 and 8.4

« Teamwork Cloud™ server 18.5 SP3 or 19.0 SP4

If you are using Eclipse Capella™ with MapleMBSE, the following version is supported:
* 140

* Note that the architecture of the supported non-server products (that is, 32-bit or 64-bit)
must match the architecture of your MapleMBSE architecture.

Introduction

X

Related Resources

Resource

Description

MapleMBSE Installation
Guide

System requirements and installation instructions for
MapleMBSE. The MapleMBSE Installation Guide is available
in the Install.html file located either on your MapleMBSE
installation DVD or the folder where you installed MapleMBSE.

MapleMBSE User Guide

Instructions for using MapleMBSE software. The MapleMBSE
User Guide is available in the folder where you installed
MapleMBSE.

MapleMBSE Configuration
Guide

This guide provides detailed instructions on workging with
configuration files and the configuration file language.

Frequently Asked
Questions

You can find MapleMBSE FAQs here:

https://faq.maplesoft.com

Release Notes

The release notes contain information about new features, known
issues and release history from previous versions. You can find
the release notes in your MapleMBSE installation directory.

For additional resources, visit http://www.maplesoft.com/site_resources.

Getting Help

To request customer support or technical support, visit http://www.maplesoft.com/support.

Customer Feedback

Maplesoft welcomes your feedback. For comments related to the MapleMBSE product

documentation, contact doc@maplesoft.com.

Copyrights

* Microsoft, Windows, Windows Server, Excel, and Internet Explorer are registered

trademarks of Microsoft Corporation.

» Teamwork Cloud, Cameo Systems Modeler, and MagicDraw are registered trademarks

of No Magic, Inc.

» Eclipse is a trademark of Eclipse Foundation, Inc.

* UML is a registered trademark or trademark of Object Management Group, Inc. in the
United States and/or other countries.

http://www.maplesoft.com/site_resources
http://www.maplesoft.com/support

x <« Introduction

1 Blocks in MapleMBSE
1.1 Blocks Table

The block diagram shown below is created using MapleMBSE and syncing it to the Team-
work Cloud. This chapter will explain how to work with blocks in MapleMBSE.

bad [Package] Structure [Structure ||

«constraints
o Fundamental Design Parameter
Aeroplane Span to Length(b)
s Vmax
Electrical Systems. Verise
T’yrwrg:m:y Systems Range
uel System Wing Loading
Hydraukc System Aspect Rato{4R)
[vaes Thrust Loading
Wota
Range
wing spen
Wmax
Veruise

T

ablocks
Boeing 747
']s . 0.1
ebloc: [ablacks abiocks | ablocks
Emphanage |Engine Control system Avienies System vings ontrel Systems
T
1. I 1. | Jo.r Jor
sblocks <blocks [etocke <blocks sblocks [ebocka
Rudder Flight Control System Engine Aiberon Flaps Slats

This example is created with the following package structure:
Model
+ Structure

The list of features available in MapleMBSE to define blocks are:
* Association

* Aggregation

» Composition

* Generalization

* OwnedEnd Multiplicty

 Constraint

» Property

2 « 1 Blocks in MapleMBSE

* Value
* Operations

* Redefine Value

"BlocksTree BlocksTreeDirect BlockProperties 'Redefes ConstraintTable ~ BlockConstraintTable ParametricTable
The configuration file, TWCSysML-Structure.mse defines seven worksheet templates to
work with blocks:

« The BlocksTree and BlocksTreeDirect worksheets are used to create blocks and their
relationships.

» The BlockProperties worksheet is used to create generalizations, values and operations.
» The Redefines worksheet is used to specify values and redefine values to blocks.

» The ConstraintTable worksheet is used to create parameters, opaque expressions and
define constraint blocks.

« BlockConstraintTable is used to create a direct association between Blocks and Con-
straint Blocks.

» Parametric Table is used to create a binding connector between the constraint parameters.

Creating a Block

To create a block, enter a name for the block in the column C insertion area (the Block Top
Level column) as shown below. A block called Aeroplane is created.

-)

[Block Top level® [Block 2nd Level* |Aggregation |
<=

"~ Enter block name

ﬂ]

A B & D E

oo nfw e

3 [Block Top level* [Block 2nd Level* [Aggregation |

5 IAeropIane] | |

To create a relation between blocks, they must first be created in the Block Top Level
column before they can be added in the second level.

Blocks can be created in all worksheets except for the ConstraintTable worksheet.

1.2 Creating Association, Aggregation and Composition * 3

1.2 Creating Association, Aggregation and Composition

Association
zblocks

zblocks
Engine Control System

Flight Control System

e 1 Aggregation E:m:::;
Engine Control System L= Ll
=blocks - [=blocks
Aeroplane ‘ CDIIIPDEIIJDI] Engine

To create relations without direction, use the BlocksTree worksheet. The blocks need to
be created as shown below.

To create Association relations:

1. Enter the block name in the Block Top Level column.

[Block Top level* |Block 2nd Level*
Aeroplane

Engine

Engine Control System
Flight Control System

|Aggregation

2. The row is highlighted as a duplicate key to indicate the block already exists. Enter the
related block name in the Block 2nd Level column, in the same row.

4 « 1 Blocks in MapleMBSE

Block Top level* Block 2nd Level* Aggregation

Aeraplane

Engine

Engine Control System _ADuplicated Key
Flight Control System /
ngine Control System

3. MapleMBSE checks if the entry is valid by comparing it with existing blocks and will
add none in the Aggregation column by default.

[Block Top level* |Block 2nd Level* |Aggregation |
Aeroplane

Engine

Engine Control System
Flight Control System
Engine Control System Flight Control System none

To create Aggregation and Composition relations, follow the previous steps by entering the
owned end block (the class that has an association owned by another class) in column C,
replace none with composite in the Aggregation column to create a composition relation
and shared to create an aggregation relation.

B C D E
[Block Top level* [Block 2nd Level* | Aggregation
Aeroplane
Engine

Engine Control System
Flight Control System
Aeroplane Engine composite —> Composition
Engine Control System Engine shared —> Aggregation

| System Engine Control System none —> Association

1.3 Creating Direct Association, Aggregation and
Composition

Use the BlocksTreeDirect worksheet to create relations with direction. Both tables are
similar in defining relations, the type of relation differs based on the entry in the Aggregation
column. Enter the class name in the Block Top Level column and enter the name of the
Attribute class in the Block 2nd Level column and specify the aggregation type. The figure
below shows relations between blocks with navigability.

1.3 Creating Direct Association, Aggregation and Composition * 5

AlB c D E
=
: Block Top level* Block 2nd Level* |Aggregation
6 Aeroplane
7 Avionics System
8 Aeroplane Avionics System composite—> Direct Composition
= Cockpit Display System
10 Cockpit Display System Avionics System shared —> Direct Aggregation
11 Crew

none—> Direct Association

12 Aeroplane
BlocksTree"| BlocksTreeDirect

«blocks
Aeroplane

“'Redefines ~ ConstraintTable — - .

«blocks
Crew

ablocks
Avionics System

ablocks
Cockpit Display System

The following table shows the necessary information needed to create a relation between
blocks and their corresponding worksheet. The Class and Attribute Class columns imply
that the class and its related class should be created first and then the respective aggregation

type.

Worksheet Type Class Attribute Class Aggregation

Association X X None

BlocksTree Aggregation X X shared
Composition X X composite

Direct Association X X None

BlocksTreeDirect | Direct Aggregation X X shared
Direct Composition X X composite

To represent multiplicity, at the Association level, enter a value for the respective blocks
in the Multiplicity column as shown below.

6 < 1 Blocks in MapleMBSE

Multiplicity
0

1.4 Block Generalization, Values and Operation

To generalize a block, enter the name of the generalizing block in the Block Top Level
column of the BlockProperties worksheet and a corresponding value in the Generalization

Block column.

A B C D F
I
L
Generalization
Block Top Level Value Operation
3 Block
5 Aeroplane
6 Boeing 747
7/ | Boeing 747 Agmplane

Use the same worksheet to add a value property to a block. Enter the block name in the

Block Top Level column and then enter the value in the Value column.

A B C D F
T
2
Generalization
Block Top Level Value Operation
3 Block
5 Aeroplane
6 Aeroplane Wtotal
7 Aeroplane wing span
8 Aeroplane Vmax
9 Aeroplane Veruise
10 Aeroplane Range

Similarly, to add operations to the blocks, enter the block name in the Block Top Level
column and the operation name in the Operation column.

1.4 Block Generalization, Values and Operation ¢ 7

(s

Block Top Level

Generalization

Value

Operation

[Engine Control System

Engine Control System

monitor engine temperature

Engine Control System

mionitor engine pressure

0~ oh n|w

Engine Control System

control fuel flow

In the Redefines worksheet, to enter a numerical value for Value Property use the Value
column, as shown below.

A B C D E F G
il
2 Block Value Property Value ol
3 Blo Property
5 Aeroplane
6 Aeroplane Range
7 Aeroplane Veruise
8 Aeroplane Vmax
9 Aeroplane wing span
10 Aeroplane Wrtotal
L Boeing 747
12 Boeing 747 Range 10800|Aeroplane Range
13 Boeing 747 Vceruise 907|Aeroplane Veruise
14 Boeing 747 Vmax 939|Aeroplane Vmax
15 Boeing 747 wing span 60{Aeroplane wing span
16 Boeing 747 Wrtotal 333400|Aeroplane Wtotal

To redefine a property of an existing block, type a new value in the Value column along
with information about the block from which the value is redefined. For example, Aeroplane
has value properties: Range, Vcruise, Vmax, wing span and Wtotal. These properties are
not defined with numerical values, as shown above (these fields can hold numerical values).
The Boeing 747 block is generalized to Aeroplane. To redefine the values from Aeroplane
to Boeing 747, enter the same value for Boeing 747 properties as that of Aeroplane. In the
Value column, enter the desired values. Now to redefine, enter the block from which the
value is redefined and the name of the value being redefined as shown below.

8 < 1 Blocks in MapleMBSE

A B C D E F
1
g Block Value Propert Value S
3 Bl [
5 Aeroplane |
6 Aeroplane Range Values to be
7 Aeroplane Veruise 7 redefined from
8 Aeroplane Vmax Aeroplane Redefined Value jand
9 Aeroplane wing span Values redefined to Block name
10 Aeroplane Wtotal 7' Boeing 747 K
1 Boeing 747 Vi] \
12 Boeing 747 Range 10800 peroplane Range
13 Boeing 747 Vcruise 907 peroplane Vcruise
14 Boeing 747 Vmax 939 Peroplane Vmax
15 Boeing 747 wing span 60 peroplane wing span
16 Boeing 747 Wtotal 333400 peroplane Wtotal

1.5 Constraint Blocks

The process for creating constraint blocks, relations and parameters is similar to that of
working with blocks in the previous section.

Constraint Block Top Level Cﬂmmel‘ int Block 2nd ;a C C Specification OpaqueExpression
rameters |Name Block Name

Aspect Ratio

Aspect Ratio AR

Aspect Ratio ratio Aspect Ratio

Aspect Ratio ratio AspectRatio |eq b"2/s

Fundamental Design Parameter

Fundamental Design Parameter Aspect Ratio

In the Constraint Block Top Level column, enter a constraint block and its breakdown in
the Constraint Block 2nd Level column. This creates a direct composition relation between
the blocks. In order to create different relations between the constraint blocks the configur-
ation file has to be edited. To create parameters, enter the respective block in the Constraint
Block Top Level column and the parameter name in the Constraint Parameters column.
To add an equation to a constraint block, enter the block name followed by the name of the
constraint in the Constraint Name column, as shown above. Enter the constraint block
name in the Constraint Block Top Level column and a name for the specification equation
in the Specification column. MapleMBSE accepts the entry. The corresponding field in the
Opaque Expression column is empty. Enter an expression, as shown in the figure.

To create a direct association between the blocks and Constraint Blocks select the Block-
ConstraintTable worksheet. Next, enter the block name in the Block Name column and
Constraint Block in the Constraint Block Name column, as shown below.

1.5 Constraint Blocks

9

[Block Name

| Constraint Block Name

Analysis Context

Fundamental Design Parameter
Fnalysis Context

Fundamental Design Parameter

To create a binding connector between the parameters of the Constraint Blocks, you must

first open the ParametricTable worksheet. Enter the Constraint Block and the parameter of
the constraint that has to be connected in the Constraint Parameter Column, followed by
the Constraint Block name and the target parameter in the respective column. MapleMBSE
will automatically create a binding connector between the two parameters of the constraint

blocks specified.

Binding Connector

Constraint Block
Aspect Ratio

Constraint Parameter

Constraint Block

Constraint Parameter

Aspect Ratio

AR

Fundamental Design Parameter

Fundamental Design Parameter

AR

Aspect Ratio

AR

Fundamental Design Parameter AR

Fundamental Design Parameter

AR

Aspect Ratio

AR

10 + 1 Blocks in MapleMBSE

2 The Fitness Tracker Model

The Excel Workbook template, TWCSysML-Model.xlsx, arranges the display of the ele-
ments in worksheets as defined in the configuration files.

The Package structure of the model is displayed in the Packages worksheet.

The Requirements packages are defined hierarchically; defining a top-level requirement,
decomposing the requirements into groups and finally stating the requirements.

Once the requirements are defined, actors and their interactions with the system are created
in the Actors and UseCases worksheets.

The BlockTree and BlockProperties worksheets are used to display information about the
system context, specifications and relations.

The BlockConnectorTable and BlockPropertyTable worksheets create connections
between block properties.

Once the structural aspects are defined, the system's behavior are defined by using the
TWCSysML-ModelActivity.mse configuration file.

This example was created with the following package structure:
Model

- Requirements

- Use Case

- Structure

- Behavior

|| _Packages ~ RequirementsTree AITari il o/ BlGCKSTree" < BIGEKPrOperties dill- s Corn e L

2.1 Packages

The Packages worksheet is used to organize the model elements into respective Packages.
The user can create packages by specifying a name for the package under the Name column
in the Packages worksheet. Packages are created as shown in the figure below. The config-
uration (.mse) file is configured in such as way so that when a user begins working directly
in a worksheet, without creating any packages beforehand, the packages are automatically
created and elements are displayed under the packages corresponding to the worksheet.

11

12 + 2 The Fitness Tracker Model

2.2 Requirements Table

The requirements defined for a system are used to identify the behavior, constraints, system
specifications, etc. for which the system is modeled. Requirements can be categorized or
grouped based on their definition of the system such as: performance, functional, constraints,
etc.

This example was created with requirements in three levels, as shown in the Excel file below.
The number of levels and appearance of the Requirements worksheet is controlled by the
configuration (.mse) file and can be changed by editing the configuration file.

3rd Level F
Hame [0 [Name D% [Name. Specification
o I) (S [

m - K1 [omputbany
[omnacrwm smargneos e
Requirements : s e o

Requirement A - — - e o s o et
— T P T T T T
i o s
Requirement 1 T T — i —
— Requirement 2 5 sl
127 of hould be of- 2%
— s e Bt S
. . 123 » Find
Requirement B S R — o des oo v sk e
N " (k253 [wish phome
. i .) maniter every day average walking
Requirement 3 T]
: s Fo S 24 [calorie count
Requirement 4 T o o —

Creating Requirements

Requirements contain a unique ID, Name and Specification field to identify and name each
requirement with a brief description.

2.2 Requirements Table + 13

Wssion Reqarements Finess Tractes

R1 Mission Reguirements Fitness
Tracker

Requirement Requirement 2nd Level
" Name I* Name I
Wission Requrements Finess "
Trackr L. L
{Wession Requitements Finess | Vb || ‘
Trcker L1 |(ompaibity . il flly
Rl MlssmnRequ;mentsPltuess e
Tracker) T
R1.1 Compatibility I— R1.1 Compatibility

To enter a new requirement:

L R1.1.1 SmartPhone Connect
with smart phone toview
activity and track records

1. Enter an ID for a top level requirement in the ID column, as shown above. MapleMBSE
checks for duplicate entries and adds a row for the corresponding ID, enabling the user

to enter a name and specification for the requirement.

2. To create a second level requirement, use the same ID and name as for the top-level re-
quirement. MapleMBSE will detect it as a duplicate entry and highlight it as a duplicate
key. Type an ID for the requirement in the ID column, of the Requirement 2nd Level
section (column E), as shown above. MapleMBSE considers this to be a unique entry
and enables the corresponding row to accept a name and description for the requirement.

3. To create a third-level Requirement, follow step 2, then enter a new ID in column H.

Follow the above steps to create any number of requirements. Excel identifies the ID columns
as text format fields. The figure below shows the requirements created for the Fitness
Tracker model, using the steps above.

14 + 2 The Fitness Tracker Model

A B © E F H]
1
2
3 Requirement Requirement 2nd Level Requirement 2nd Level
f ID* |Name ID* |Name 1D* Name Specification
5
6 R1 Mission Requirements Fitness Tracker
7 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility
Connect with smart phone to view activity
8 R1 Mission Requirements Fitness Tracker [R1.1 Compatibility R1.1.1 [SmartPhone and track records
9 R1 Mission Requirements Fitness Tracker [R1.1 |Compatibility R1.1.2 |WaterProof 5 ft water resistance
10 R1 Mission Requirements Fitness Tracker [R1.1 |Compatibility R1.1.3 |Message Notification |Notify of any incoming message or calls
Device features and settings should be
11 R1 Mission Requirements Fitness Tracker [R1.1 |Compatibility R1.1.4 |Ease of Use easier to understand and use.
12 R1 Mission Requirements Fitness Tracker [R1.1 |Compatibility R1.15 |Alarm Notification Notify alarm through vibration
13 R1 Mission Requirements Fitness Tracker [R1.1 |Compatibility R116 |[Style available in different colors and compact
14 R1 Mission Requirements Fitness Tracker [R1.2 Performace
risk factor of wearing band should be less
15 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.1 |Safety [than .0001%
16 Rl Mission Requirements Fitness Tracker |R1.2 |Performace R1.2.2 |Accurate accuracy of tracking should be +/- 2%
17 R1 Mission Requirements Fitness Tracker [R1.2 Performace R1.2.3 |Battery Life Minimum 15 days with one charge
18 R1 Mission Requirements Fitness Tracker |[R1.2 |Performace R1.24 |Store Data Keep record of everyday activity
19 R1 Mission Requirements Fitness Tracker |R1.2 |Performace R1.2.5 |Activity Find activity type
20 R1 Mission Requirements Fitness Tracker [R1.3 Features
should track deep sleep cycle and sync
21 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.1 |Track Sleep Cycle with phone
22 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.2 |Track Steps monitor every day average walking steps
monitor heart rate during fitness activity
23 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.3 Heart Rate Monitor and regular activity
24 R1 Mission Requirements Fitness Tracker [R1.3 Features R1.3.4 |Calorie count display calories burnt
25 R1 Mission Requirements Fitness Tracker [R1.3 |Features R13.5 |[Time display time
26 R1 Mission Requirements Fitness Tracker [R1.4 [Display
27 R1 Mission Requirements Fitness Tracker [R1.4 [Display R1.4.1 |Selection have a touch sensitive display
28 R1 Mission Requirements Fitness Tracker [R1.4 [Display R1.4.2 |Display options customizable display

2.3 Use Case Table

The Use Case table describes the goals and interactions of the system model with external
users (stakeholders).

To create a use case table, the actors of the system are identified, then the goals of the system
and other functionality expected by the user.

o)
o ul
‘s

Als 3 o € G
1
1 I
Use ;:ase . [— "
s [or
USE Case 1] User [connect with phone
7 lusar lconmect witn smone e data
A=t 2) e ey o onnectwihrone
3 o Trock4n8 masitor Gl sty ik
Actor 1 gl o Track and mosvtor sy ety |
e Trac g moarorcay sy Tk b ot Sty sty
P e ume |
n [smper foync |
W [smanomeee T [commectwih phone |
5 [Smart Phore Jsymc data |connect with phone sym data
M.&cm 2 # e e ooy]]
3 1 [pronder Upsare scfoure Tack and monver iy actty | |
it} Frovider Track and monitor daily activity [update software

2.3 Use Case Table « 15

Creating a Use Case Table

Use cases and actors are identified by unique names. The configuration file is created in
such a way that two different tables are needed to create the use case table. The Actors
worksheet is used to list the identified actors of the system. The UseCases worksheet is
then used to create the interaction between actors and use cases.

To create a Use Case table:

1. Create actors in the Actors worksheet as shown below.

Al c i

3 |

2 ! | |

3 Actors . . Wl —

o - s — — "*“"‘?':3 ; ey | iz ‘ e]
I ST | r -

5 E = R I A : - T

: - ;‘: r':z.'ﬁ'-; b]

Ry] Aescted el Agatel melnt! 1 |
! 1 a3 LFo] | e feeCietl Aozt el

s T -
= = e &=
nari e i | i " ———

e £ it W phore I ™ ——— i I

it aaia b=t i 4 i -

iy &
2 —~ Tlae Cage -— Use Cage 2 — %
Ea

2. In the UseCases worksheet, type the name of the actor to create a use case or select a
name from the list. Type the use case in the UseCasel column as shown above.

3. To relate use cases, enter the actor name and corresponding use case in columns C and
D respectively. MapleMBSE will highlight this as a duplicate key. Enter the other use
case in the Associated UseCase2 column (column E). This entry is considered valid and
rows are automatically created to show that the association is bidirectional.

The Use Case table created for the Fitness Tracker is shown below. The Associated
UseCase3 column is automatically generated by MapleMBSE based on the input in the
other columns. To associate use cases, they must already exist in the UseCasel column.

16 + 2 The Fitness Tracker Model

AlB C D E F
1
2
3 Actor UseCasel Associated UseCase2 Associated UseCase3
5 User check phone notification
6 User connect with phone
7 User connect with phone sync data
8 User connect with phone sync data connect with phone
9 User Track and monitor daily activity
10 User Track and monitor daily activity [Update Software
1 User Track and monitor daily activity |Update Software Track and monitor daily activity
12 User view time
13 Smart Phone sync data
14 Smart Phone sync data connect with phone
15 Smart Phone sync data connect with phone sync data
16 Provider Update Software
17 Provider Update Software Track and monitor daily activity
18 Provider Update Software Track and monitor daily activity Update Software

2.4 Blocks Table

Blocks are created in a predefined package named, Structure. From the configuration file,
three worksheets are created:

* BlockTree to create blocks and parts,

* BlockProperties to create operations, generalizations and to create values for the blocks,
and

» BlockSatisfiesMatrix to validate the model against the requirements to identify if all
requirements have been met.

To make the example model simpler, only direct composition and generalization relations
between blocks are used.

Blocks Tree

Blocks are identified uniquely by their names and can be accessed between worksheets. To
identify the scope and working environment of the system, the mission context table is
created using the BlockTree and BlockProperties worksheets.

Once the system scope is defined, a blackbox specification for the system of interest is
created in terms of values and operations. These operations defined for the system are used
to work with the behavior of the system defined in a different configuration file.

On defining activities of the system using the behavior configuration file, logical blocks
are defined in the same table using BlocksTree. Finally, parts of the system are defined at

2.4 Blocks Table « 17

a physical level to meet the requirements specifications and also to satisfy the behavioral
aspect of the system modeled.

1. To create a block, enter a name for the block in the Block Top Level column (column
C), as shown below. Every unique entry in this column creates a block. Text entered is
case sensitive so to create properties for a block in the second level, the block name
should be accessed with the same case.

18 ¢ 2 The Fitness Tracker Model

tleessns s m e s e o u e |u{e [=]=]0]

A ()

- e [e =

st ki Tt

AR c] E P L = L B L

reliability|
accuracy
calaries.
hours.
bmp

| trigger vibration

| get heart rate
caleulate calaries

|get steps data

|get BMA data

display notification
[compare send/recaive sig:
|send processed data
continuous mavament
[receive incoming data
[record time

save data local

.|| SasUre movement

tueeerbekksrsarEsleecew vk

. To create a direct compostion between blocks or to assign a block as part of another

block type, enter the name of the block for which a part has to be created in the Block
Top Level column followed by the part name in Block 2nd Level, as shown above. Now
a direct association is created between Mission Context and Activity Tracker.

. Blocks can be created at a third level in two ways: similar to adding blocks at the second

level, specify the top level block, then the second level block, and finally the third level

2.4 Blocks Table ¢ 19

block name. The figure below illustrates this way of adding a third level block. Since
Screen is already a part property of Activity Tracker, physically adding a part to Screen,
as shown in row 9, will automatically create row 6 and vice versa.

Al B C D , E
1
2
3 [Block Top level* Block 2nd Level* |Block 3rd Level* |
5 Activity Tracker - Physical Screen
6 Activity Tracker - Physical Screen Capacitive touch Screen
7 Capacitive touch Screen
8 Screen
9 Screen Capacitive touch Screen
10

a4

To create generalizations, the BlockProperties worksheet is used. Similar to the above step,
once blocks are created in the top level column, enter the block name in Block Top Level
and the generalizing block in the Generalization Block column (cell D6). In the table,
Android and 10S are generalized to Smartphone.

Blck TopLevel | Generalzation Blck Valoe

]

2

5 [Eenart Phane

] Senart Phane Andeold
1 Smart Phone 0]

8 ‘Mlss:-:-lt-:n-lleu:

3 Water

1 \ser

il 105

12 Physical Envirgnment

bE] Physical Enviranment |Gym

u Phiysical Environment |Water
15 Gym

16 Walch

17 Watch Wctivity Tracker
18 Android

L] Activity Tracker

n

To create the value and operation property of a block, in the BlockProperties worksheet
enter the name of the block that you want to assign a value. Since the block already exists,
the row is highlighted as a duplicate key. Type the value in the Value column (column E),

20 <+ 2 The Fitness Tracker Model

as shown below, to add a value to the block, Activity Tracker for this example. Notice
cells E6 to E12 have values assigned to Activity Tracker.

5 |Activity Tracker

& Activity Tracker wer

7 Activity Tracker reliability

8 Activity Tracker accuracy

9 Activity Tracker calories

10 Activity Tracker hours.

11 Activity Tracker bimip

12

13 Activity Tracker tri vibration

14 Activity Tracker get heart rate

15 Activity Tracker calculate calories

16 Activity Tracker get steps data
El Activity Tracker [get BMA data

18 Activity Tracker display notification

19 Activity Tracker compare send/receive signal
20 Activity Tracker send processed data
2 Activity Tracker continuous movement
22 Activity Tracker receive incoming data
23 Activity Tracker record time

24 Activity Tracker save data locally

5 L

In a single row for the block, either value or operation can be assigned to it. To assign oper-
ation to a block, a similar procedure is followed. Enter the block to which an operation has
to be created in the Block Top Level column and enter the operation name in the Operation
column (column F), as shown below.

2.4 Blocks Table

21

4l a|B| c E F
1
2
o [mockToprevel [T [value [operation |
5 | |Activity Tracker
6 Activity Tracker f
7| Activity Tracker reliability
8 Activity Tracker acturacy
9 | Activity Tracker calories
10| Activity Tracker hours
11 Activity Tracker bmp
u 4
13 | Activity Tracker tri vibration
14 Activity Tracker get heart rate
15| Activity Tracker calculate calories
16 Activity Tracker et steps data
a7] Activity Tracker et BMR data
18 | Activity Tracker display notification
19 Activity Tracker compare send/receive signal
0| Activity Tracker send processed data
n Activity Tracker continuous Mmovement
22| Activity Tracker receive incoming data
23| Activity Tracker record time
2 Activity Tracker save data locally
5 L

Using the steps mentioned above, the Activity Tracker is created and the block table at
the physical level is shown while the rest of the inputs are filtered.

22 + 2 The Fitness Tracker Model

Block Top level™®

Block 2nd Level™

Block 3rd Level™

3 axis accelerometer

32-bit microcontroller CPU

Activity Tracker - Physical

Activity Tracker - Physical

Power Subsystem

Activity Tracker - Physical

Power Subsystem

Battery

Activity Tracker - Physical

Power Subsystem

Power Management Unit

Activity Tracker - Physical

Processor Subsystem

Activity Tracker - Physical

Processor Subsystem

32-bit microcontroller CPU

Activity Tracker - Physical

Processor Subsystem

Bluetooth IC

Activity Tracker - Physical

Processor Subsystem

PCB board

Activity Tracker - Physical

Processor Subsystem

ProcessorApplication

Activity Tracker - Physical

Processor Subsystem

Vibration Motor

Activity Tracker - Physical

Processor Subsystem

Wireless Chipset

Activity Tracker - Physical

Screen

Activity Tracker - Physical

Screen

Capacitive touch Screen

Activity Tracker - Physical

Tracker Subsystem

Activity Tracker - Physical

Tracker Subsystem

3 axis accelerometer

Activity Tracker - Physical

Tracker Subsystem

Ambient Light Sensor

Activity Tracker - Physical

Tracker Subsystem

Barometeric Pressure Sensor

Activity Tracker - Physical

Tracker Subsystem

Galvanic Skin Response Sensor

Activity Tracker - Physical

Tracker Subsystem

Optical Heart Rate Monitor

Ambient Light Sensor

Barometeric Pressure Sensor

Battery

Bluetooth IC

Capacitive touch Screen

Galvanic Skin Response Sensor

Optical Heart Rate Monitor

PCB board

PCB board

Storage unit

Power Management Unit

Power Subsystem

Power Subsystem

Battery

Power Subsystem

Power Management Unit

Processor Subsystem

Processor Subsystem

32-bit microcontroller CPU

Processor Subsystem

Bluetooth IC

Processor Subsystem

PCB board

Processor Subsystem

PCB board

Storage unit

Processor Subsystem

ProcessorApplication

Processor Subsystem

ProcessorApplication

32-bit microcontroller CPU

Processor Subsystem

Vibration Motor

Processor Subsystem

Wireless Chipset

ProcessorApplication

ProcessorApplication

32-bit microcontroller CPU

Screen

Screen

Capacitive touch Screen

Storage unit

Tracker Subsystem

Tracker Subsystem

3 axis accelerometer

Tracker Subsystem

Ambient Light Sensor

Tracker Subsystem

Barometeric Pressure Sensor

Tracker Subsystem

Galvanic Skin Response Sensor

Tracker Subsystem

Optical Heart Rate Monitor

Vibration Motor

Wireless Chipset

2.5 Internal Blocks Table ¢ 23

Block Satisfaction Matrix

The Block Satisfaction Matrix is used to verify whether the blocks created satisfy the re-
quirements. The matrix template is created automatically using the information from the
Blocks and Requirements worksheets.

A = DleE Flelnlir1lakleminolrplalr s|T/lulviw/ x| vz aalasacap

= x
< |< 8 |= = N 5]
ERER=NH < |B=EE = |5 | 2=
ERENENEY t;i g 1z |s ZREIEEE
ERERERFS g =|E SEI"EE
= kel N ENES E
= E]

a

3 B 3 axis accelerometer

7 | 1 |32-bit microcontroller cPU

8 o |Activity Tracker

° < |Activity Tracker - Physical

10 |Ambient Light Sensor

11 = Android

12 Barometeric Pressure Sensor

1z Battery

14 Bluetooth IC

1s Capacitive touch Screen

1e GalvanicskinResponsesensor | | | [[T 1T 11T 1T 1T 1T 1T 1T 1717 1T T 1 1]

17 GPs

1s Gym

19 1os

20 Mission Context

21 Optical Heart Rate Monitor

22 PCB board

23 Physical Environment

2a Power Management Unit

2s Power Subsystem

26 Processor Subsystem

27 ProcessorApplication

28 Screen

29 Smart Phone

30 Storage unit

31 Tracker Subsystem

32 User

33 Vibration Motor

34 Watch

35 ‘Water

36 WwWireless Chipset

To create a satisfy relation between the blocks and requirements, identify the block that
satisfies a requirement and in their intersection of row and column, enter 'x' to indicate that
the corresponding requirement has been met. This creates a satisfy relation between block
and requirement.

2.5 Internal Blocks Table

In the previous sections the system of interest has been defined with operations, values, and
by different parts of the system. In this section, we will define how these parts of the system
and its properties, will interact with each other.

To define ports through which the system interacts with other parts and subsystems, we
create ports to blocks and then represent how these ports are connected. As shown in the
diagram below, we can represent the interaction of block properties using ports and connect-

ors.

24 + 2 The Fitness Tracker Model

[plockmame — [eropertyName [porteroperty
3 axis v
3 axis accelerometer Jotionsensorip
3 axis accelerometer Jtrackerinfoout
3 axis accelerometer [|trackerpowerin
32-bit microcontroller CPU V4
32 bit microcontroller CPU Proc n / [Biockame BlockMame. [Portraperty BlockName Parthame
[Activity Tracker - Physical y Physical __|light sensor ip Tracker Subsystem lightsensor ip Activity Tracker - hysica | Tracker Subsystem
[Activity Tracker - Physical __|Power Activity Tracker -Bhysical | mation sensosip | |
[Activity Tracker - Physical y Physieal imation senser ip Tracker Subsystem |metionsensorip Activity Tracker - Physical | Tracker Subsystem
[Activity Tracker - Physical __|screen i s enc iy
[Activity Tracker - Physical Tra 7 act Tracker - Physical ES5Ure Sensor | Tracker Subsystem BSsuresensofi Activity Tracker - Physical | Tracker Subsystem
[Activity Tracker - Physical 7 T e Ll LI a 5 _J—'“' ———— e
[Activity Tracker - Physical 7 Y Physial __[USBin
[Activity Tracker - Physical 7 Actiity Tracker -Physical __[USBin [Powes Subsystem Jusb ip Actvity Trackes - Physical |Power Subsystem
| Activity Tracker - Physical /7 tivity Tracker - Physical user dtspay op,
jactivity Yrackas - Ghysical Vi Tracker - Physical user dispay6p Screen [activity Trackes - Physi
[Activity Tracker - Physical yd
[Activity Tracker - Physical 7 trvity Trackes - Physical user
[Activity Trag 7 Actrity Tracker - Physical ip screen Juserip ity
Activity Trac — Block A yi Activity Tracker - Physical [vibeation out
ACtivity TraCaes wogormee o | f m L = - _ _
ctivity Tracker - Physical 7 — Block B, | Property Connector

Activity Tra . gr- Physical
Activity Trackdr - Physical Power Subsystem
KelTety Trackqs - Physical Power Subsystem |Activity Tracker - Physical __[Tracker Subsystem
b 2 PowerSubsyciem T o
[Power Subsystem]
#i_ Partd ‘Adtivity Trackr - Physical Processor subsystem _|asteriyTracker - Physical __|Power Subsystem
(Activity Trackde - Physical Proces: em__|Activity Tracker - Physical __|Tracker Subsystem
[Activity Trackdr - Physical ——{Processor Subsystem __|Activity Tracker - Physical _|screen
[m-vwmn‘ﬁ%w screen
* Part ¢ =Tt Trackde - Physical screen |activity Tracker - Physical _|Power Subsystem
/ Part f fackdr - Physical Screen |Activity Tracker - Physical __|Processor Subsystem
Jacids - Physical Tracker Subsystem
aftivity Trackde - hysical Tracker Subsystem __|Activity Tracker - Physical __|Pawer Subsystem
abtivity Trackfr - Physical Tracker Subsystem __|Activity Tracker - Physical __|Processar Subsystem
Dy

Block Property Table

This worksheet displays the blocks and their part properties based on how they are defined
in previous worksheets. In addition to the part properties, you can create ports by using the
PortProperty column.

Creating an entry is similar to entries discussed in other sections:
1. Specify the block to which a port has to be created

2. In the PortProperty column, enter a name for the port.

In the example below for the Activity Tracker- Physical block, the PropertyName column
displays the existing part properties from previous worksheets. To create ports, enter the
block name in the Block Name column (column D) and the port name in the PortProperty
column (column G).

2.5 Internal Blocks Table ¢ 25

Activity Tracker -

Physical
A
[.l 4lalelc ‘ D E G
Power pgr 1 B Bl perty perty
Subsysters 13 Activity Tracker - Physical Power Subsystem
14 Activity Tracker - Physical Processor Subsystem
P2 15 Activity Tracker - Physical Screen
-_—‘—‘—\ . .
Processor 16 ~Actiyity Tracker - Physical Tracker Subsystem
Subsystem’ 5, 17 Activity Tracker - Prysical__ [Tight sensor ip
— 18 Activity Tracker - Physical bluetooth out
\ 19 Activity Tracker - Physical > pressure sensor ip
Tracker 20 Activity Tracker - Physical motion sensor ip
Subsystem 21 Activity Tracker - Physical user ip

Block Connector Table

To create connectors between ports owned by the blocks and parts with ports, use the
BlockConnectorTable worksheet. In the example below, the first two columns, BlockName
and PortProperty, represent the owning block and the next two columns represent the
connecting block port information.

The next columns, BlockName and PartName, are used to specify the owner and connecting
parts.

To create the connection between ports, enter the top level block name and its port in the
first two columns, followed by details of the connecting block and port. MapleMBSE will
validate the input and create another row automatically to represent that the connection is
bidirectional.

The last two columns will be highlighted. as shown below.

To complete the connection, enter the block name and part name in their respective columns,
as shown below. The row that was automatically created by MapleMBSE does not require
any input and should be left blank.

26 + 2 The Fitness Tracker Model

BlockName [PortProperty [BlockName: [PortProperty BlockName [Parthame |
|»ﬂ<l|wry Tracker - Physical].“ h {rlo\.nw(|b|uetom!|nut | 1 ‘l
|Pn:(essnr5uh5‘rstem | [ﬁcti\nrf Tracker - Physical |h|ue[om?| out | 1 'l
[BlockName [PortProperty _ [BlockName [PortPraperty [BlockName [PartName |
[activity Tracker - Physical [bluetooth | Subsyste [t activity Tracker - Physical [Processor Su]
| [oh [activity Tracker - Phys|bluetoath out | 1 1
BlockName PortProperty BlockName [Portproperty [BlockName PartName
Activity Tracker - Physical galvanic sensor ip Tracker Subsystem |_gahra nic sensor ip Activity Tracker - Physical | Tracker Subsystem
Activity Tracker - Physical heart senser ip Tracker Subsystem heartsensorip Activity Tracker - Physical |Tracker Subsystem
Activity Tracker - Physical light sensor ip Tracker Subsystem lightsenser ip Activity Tracker - Physical |Tracker Subsystem
Activity Tracker - Physical motion sensor ip Tracker Subsystem i ip [Activity Tracker - Physical [Tracker Subsystem
— et . - — gy
|Aclivit\' Tracker - Physical USB in Power Subsystem ush ip Activity Tracker - Physical |Power Subsystem
Activity Tracker - Physifid user dispay op Screen userdisplayop | Activity Tracker - Physical [Screen
Activity Tracker - Physichl user ip Screen userip Activity Tracker - Physical |Sereen
Activity Tracker - Physicd| ibrati t brati [Activity Tracker - Physical |Processor Subsystem
[activity Tracker - Physicd] ireless connect [wirel t [Activity Tracker - Physical |Processor Subsystem |
[Power Subsystem 1 processor power op |Powerflanagement Unit__|processor power op Pawer Sub] Pawer Management Unit
Power Subsystem | screen power op Power Wanagement Unit__|screen power op Power] Power Management Unit
Power Subsystem | tracl wer op Power anagement Unit__|trackerpower op Power] Power Management Unit
Power Subsystem l usb ip UsB usbip Power Subsystem use
Processor S | isplayop pplication displayop P ication
Processor S | [processore polication processort P ication
Processor S | processorpowerip pplication proc ip P ication
Processor Subsystem] trackerinfoin ProcesgorApplication T foi P ication
Processor 5 | [useripop pplication uséripop Processor ProcessorApplication
Power
H Pa:Subsyslem

P2
Processor —’__.._--"'/

Subsysten: pp; Activity Tracker -

F‘ Physical
\ Tracker | ¢ 63

Subsystem

Property Connector Table

The Property Connector Table is used to connect part properties within the block, as
shown below.

To create a connector between Power Subsystem and Processor Subsystem, as shown
below, enter the block which owns the property in the first column. In this case, enter
Activity Tracker-Physical followed by the owning part name, Power Subsystem. In the
Property Connector section, enter the other property owner, which is again, the Activity
Tracker-Physical and the connecting part, Processor Subsystem. When the entry is valid,
MapleMBSE adds another row automatically to represent that the connection is bidirectional.

2.6 Activity Diagram <« 27

Property Connector
BlockName | BlockProperty

BlockName PropertyName

Activity Tracker

Activity Tracker - Physical
Activity Tracker - Physical |Power Subsystem
Activity Tracker - Physical |Processor Subsystem
Activity Tracker - Physical |Power Subsystem |

| Property Connector |
SlockName pIoRSTame ‘ Sockpeoneny BlockName [Blockpropery |

Activity Tracker

Activity Tracker - Physical
Activity Tracker - Physical |Power Subsy Power Subsystem
Activity Tracker - Physical |Processor Subsystem | Processor Subsystem
Activity Tracker - Physical |Power Subsystem Power Subsystem Activity Tracker - Physical |Processor Subsystem
Activity Tracker - Physical |Processor Subsystem |Processor Subsystem |Activity Tracker - Physical |Power Subsystem

l

Activity Tracker -
Physical
7]1—
I ‘i Bk ’ Property Connector
BockName Boddoperty |
Activity Tracker - Physical
oy Power ActityTracker - Physical | [Power Subsystems
i — P4 _Subsystem ity raher-Physkal__|PowerSubsytem ety Tracker-Physial_rckerSubystem
// |Ilttui[~[‘lrﬂiéf- Phisical Powes Subsystem Activity Tracker - Physical | Processor Subsysten !
P2 Activity Tracker - Physical Poraer Subsystem Activity Tracker - Physical [Sereen
Processor Activity Tracker - Physical [Processor Subsystem |
Subsystem' p; [t Tricker Physicsl Tprocssor Subsyatem ity Tracker-Physcil [powee Subsysten]
—_ Acthty Tracker - Physical | Processor Subsystim |Activity Trackes - Physical _ [Tracker Subsystem
Actiity Tracker- Physical |Processor Subsystem | Activity Tracker- Physical [Screen
\ Tracker Actiity Tracker - Physical [Sereen |
Subsystem Activty Tracker - Physical [Sereen activty Tracker - Physical | Power Subsystem
Actiity Tracker - Physical [Sereen Activity Tracker - Physical | Processor Subsystem
Acthvity Tracker - Physical Tracker Subsystem |
Activity Tracker - Physical [Tracker Subsystem | Activity Tracker- Physical | Power Subsystem
\ﬂmmmrmr- Physal [TrackerSubsystem |actvity Tracker-Physical Processor Subsysten I||

2.6 Activity Diagram

An Activity Diagram is used to define system behavior. The top level system functionality
is initially defined and these defined actions are further decomposed to show the logical
behavior of the system.

Only call behavior actions with pins are used in this model.

28 ¢ 2 The Fitness Tracker Model

Creating Actions for an Activity

Using the Use Case diagram, we have identified that the basic use case for the model is to
track daily activity.

The ActivityTable worksheet is used to create activities, action, control flow and object
flows. To create an activity diagram named, track daily activity, enter the name in the
ActivityName column, as shown below. Once we create the actions for the activity, we
need to now create flow between the actions. In this model, control flows are used only to
represent the start and end of an activity.

To create control flows to denote the start and end of the activity, use the ControlFlowName
column. Following the creation of the control flows, object flows can be created in the same
worksheet.

Enter a name for the object flow in the ObjectFlowName column. As shown in the diagram
below, control flows and object flows are created for the activity diagram, track daily
activity. Linking these flows with actions is discussed in the following section.

Creating Actions for an Activity

Using the Use Case diagram we have identified the basic use case for our model is to track
daily activity. The ActivitysTable worksheet is used to create activities, action, control
flow and object

Final Noda

act start
track steps tlend
act en
display
track sleep cycle ———=> gpservation data

‘_\“-\\
Track daily activity — / ‘\“\H

show calories
track heartrate

provide power

a
create an Activity Diagram, first create an activity and its elements in ActivityTable. Enter

2.6 Activity Diagram « 29

the name of the activity in column D (ActivityName) as shown above. Once an activity is
created we can create its initial node, final node and its actions in the respective column as
shown. Use column H (Behavior) to allocate a behavior to the actions we created. In order
to allocate a behavior, it should exist as an activity in the ActivityName Column.

Creating Flows

Using the ObjectFlow and ControlFlow Table we can now complete the activity diagram.
To create an object flow between two actions in the ObjectFlow Table, Enter the activity
under which the action was created in ActivityTable under Column D and the action name
in Column E(Action Name Column) and the other action to be link with in Column G and
its activity in Column F. Now MapleMBSE will create the input and output pins for the re-
spective actions. In the case of Behavior being allocated to the action being links,
MapleMBSE will automatically create parameters.

30 < 2 The Fitness Tracker Model

A|B|C D E F G
1
2 [Object Flow]
4 ‘Acliviry Name [Action Name |Activ|‘ty Name |Aﬂiun Name I
6 track daily activity
7 track daily activity track heartrate
g track daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
1 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power

A|B C D E F G
1
2 [Object Flow \
a |Activity Name Action Name [activity Name |Action Name |
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity track heartrate track daily activity display observation data
1«
A B C D E F G
1
2 [Object Flow |
4 [Activity Name [Action Name [activity Name [Action Name:]
6 track daily activity
7 track daily activity track heartrate
8 track daily activity track steps
9 |track daily activity track sleepcycle
10 track daily activity show calories
11 track daily activity display observation data
12 track daily activity act
13 track daily activity end
14 track daily activity provide power
15 track daily activity track heartrate track daily activity display observation data
16 track daily activity track steps track daily activity display observation data
17 track daily activity track sleepcycle track daily activity display observation data
18 track daily activity show calories track daily activity display observation data
19 track daily activity provide power track daily activity display observation data
an

To create control flow between nodes we follow the same steps we used for creating object
flow, In ControlFlow Table, enter the activity name in Column C(ActivityName) and the
node in Column D(Activity Node) and the action node to be linked with in Column F and
its activity in Column E. Similarly we can link nodes and actions with Control or object
flows.

2.6 Activity Diagram

31

A B CD

ActivityPartition Allocation

Activity Name

SwimLane

Representing Block

Activity Name

Action Name

connect smartphone

display notification

display observation data

display time

provide power

track daily activity

track heartrate

track sleepcycle

track steps

Control Flow

|Activity Name

|Action Name

|Activity Name

|Action Name

track daily activity

track daily activity

track heartrate

track daily activity

track steps

track daily activity

track sleepcycle

track daily activity

show calories

track daily activity

display observation data

track daily activity

act

track daily activity end
track daily activity provide power
track daily activity act track daily activity display observation data

track daily activity

display observation data

track daily activity

end

To create an object flow between parameter and an action we use the same method we used
for creating object flow between actions, MapleMBSE will automatically identify the element

type and create the corresponding links.

Allocate Actions to Swim Lanes

32 2 The Fitness Tracker Model

ActivityPartition Allocation

Activity Name Swim Lane Representing Block Activity Name Action Name
[connect sma_nEhone
display notification
display observation data
display time

provide power
track daily activity
track heartrate
track sleepoycle
track steps
|display observation data PA ProcessorApplication
ActivityPartition Allocation
Activity Name Swim Lane Representing Block Activity Name Action Name

connect smartphone
display notification
|display observation data
display time

provide power

track daily activity

track heartrate

track sleepcycle

track steps

display observation data PA Proc lication

display observation data PA Proo ation display observation data get sleep rate

Before we can allocate actions to a swim lane. We first create swim lanes and assign a block
to the swim lane. BlocksTable tab displays the list of available blocks that can be assigned
to a swim lane. In SwimLanesTable tab ActivityName column displays the activities created
using previous tables. To create a swim lane enter a name in Column G (Swim Lane) and
the block it represents in Column H(Representing Block). Now we have created the swim
lanes with the respective blocks it represents. To allocate an action enter the name of the
activity in column F(Activity Name) and the swim lane name in column G. MapleMBSE
will highlight this record as duplicate field, enter the action to be allocated in column J and
the activity in column I to complete the allocation. MapleMBSE will now accept this as a
valid record and remove the error. Similar we can access different activities we created and
allocate the actions to swim lanes.

Activity Breakdown

To create an activity diagram for an action, use the ActivityBreakdown worksheet. An
action can be further decomposed to more detailed granularity by using the same approaches
discussed in previous sections.

2.6 Activity Diagram

33

A [Activityn
track heartrate | AdivityNane Parameterme Direcion
display obsendation data \ ook iy actily
trackslee_pq:E i g
show calories \
provide power \ \ "ﬂgm et \ o
find altitude €—— check pressure
send electric pulse j
tracksteps = L determine
check |5 deter
5 actiity [T~) }
/ store data —| “e“."""
send signal /
Objectlow Objectlow D7
Kame ActivityName | (Name n
OwnedParameter
ArtivityName Fh How Name ActivityName

track daiy actvity

Irack stegs 1

rack stegs depsont [dislaytsteps [racksteps)

To create an activity diagram for an action, enter the same name in the ActivityName
column, as shown below. This will create an activity diagram, track steps. Using the

ActivityTable worksheet, we can create flows and actions with the same approach mentioned

above.

ActionMame

ActivityName

Tvrrrr—

display observation data

track sleepcycle

show calories

provide power

ActionName

ActivityName

track heartrate

ltrack steps

lrack steps

display observation data

track sleepcycle

show calories

provide power

34 < 2 The Fitness Tracker Model

Creating Activity Parameters

When we create activity diagrams for the actions, consistency with the number of input pins
and output pins must be maintained. We create a parameter and specify the direction, as
shown below.

Enter a name in the ParameterName column and its Direction as either in or out. We
create the parameter to show that the track steps activity receives information that is pro-
cessed by actions within track steps and output is sent through a parameter called steps
out.

ActivityName ParameterName Direction
track daily activity

track steps

track steps steps out out

Parameter Flows

The ParameterFlowTable worksheet is similar to that of the ObjectFlowTable worksheet.
The only difference is that we link object flows with an owned parameter of the activity
instead of action pins. Once the activity parameter is created using the Parameters work-
sheet, we create an object flow in the ActivityTable worksheet. The object flow created is
then linked with an action using the object flow table. In the parameter flow table, enter the
activity followed by the parameter, steps out, in the Parameter Name column. MapleMBSE
will highlight the row. Enter the object flow name, display tsteps. At this point, we should
also specify that the parameter used, steps out, is an owned parameter for the activity, as
shown below.

ObjectFlow ObjectFlow
Parameter |Name ActivityName Name ActivityName OwnedParameter

ActivityName Name Incoming Flow Outgoing Flow Name ActivityName
track steps
track steps steps out display tsteps track steps 1 steps out track steps

3 State Machine Diagram

This section defines how to create states, define their transitions and the events that trigger
these transitions using MapleMBSE. The configuration file, TWCSysML-StateMa-
chines.MSE defines four worksheets that can be used to create states and define their
transitions. The TWCSysML-StateMachines.MSE file is located in the Application sub-
directory of your MapleMBSE installation directory. This example only covers the case
where a transition is triggered by a signal event. The following package structure is followed:

- Model
-Package
+StateMachine
+Region
+SignalEvent

"l | StateMachines :

=N

35

36 < 3 State Machine Diagram

3.1 How to Create a State Machine Diagram

In the StateMachines worksheet enter Package name as Package, and StateMachine name
as StateMachine. These naming conventions can be changed by modifying the configuration
file.

|Pacl:age StateMachine ISigna IEvent
Package StateMachine
Package touch

Once the state machine is created, we have to define a region in which states will be created.
To create a region, use the Pseudo State Properties worksheet. Enter a name for the region,
as shown in the table below (Regionl is used as default as defined in configuration file).
This table is also used to create the pseudo state (PseudoState column) and final state (Fi-
nalState column) that defines the start and end of the state machine. Enter a name for the
states, as shown below. We define the transition from the pseudo state in this worksheet,
once we have created other states, and its transition in the Transition Matrix Table work-
sheet.

IstateMachine _ [Region [Pseudostate |rinalstate [sorestte [mransition [Targetstate
StateMachine
StateMachine |Regionl

StateMaching Region Pseudo State Final State Sourpe State Transition Target State
StateMaching

StateMaching Regionl

StateMaching Regionl off

$tateMaching Regionl On

3.2 How to Create States and Transitions

To create a transition between states in the State Transition Table, enter the source state
in the SourceState column and the target in the TargetState column, as shown below.
Once we create these transitions between the states, we can edit the properties of these
transitions in TransitionProperties worksheet.

3.3 How to Create Triggers with Signal Events < 37

|Sourcestate

[Targetstate

Charging

DisplayData

Off

on

SlespMode

Tra :king

|sourcestate

|Targetstate |

Charging

DisplayData

Off

On

SleepMode

Tracking

On

Tracking

Trac.'n:ing

DisplayData

Tracking

Charging

Charging

SleepMode

Tracking

Ooff

3.3 How to Create Triggers with Signal Events

Initially, the Transition Name column will be displayed as a blank column since we haven’t
named the transitions. Enter a name for the transitions so they can be identified to create a
trigger and assign a signal event. Enter the Transition name in the Transition Name column
followed by the Signal Event name we created in StateMachine Table. MapleMBSE will
accept this as a valid input and automatically populate the other fields.

38 < 3 State Machine Diagram

Trangition Name Source State Target State Signal Event
Tracking off
On Tracking
Tracking DisplayData
Tracking Charging
Charging SleepMode
Transition Name Source State Target State Signal Event
usercommand/power Tracking Off
poweron On Tracking
touch Tracking DisplayData
usb connect Tracking Charging
Charge/Non-Tracking Charging SleepMode
Transition Name Source State Target State | Event
usercommand/power Tracking off
powerOn on Tratking
towch Tragking DisplayData
ush connect Tracking [Charging
Charge/Mon-Tracking (Charging SleepMade
touth Tracking DisplayData touth
wsl connect Tracking [Charging wsh connect

4 Count Down Timer Model

The example is create with the following package structure
Model

-Requirements

-Use Case

-Timer

To create a Timer model we define the simplest requirements that is expected of the Timer.
The model is required to have functions that enable the user to start, reset, pause and stop
the timer. When Timer reaches zero, the user must be notified and the timer should continue
counting down. Keeping these as the only requirements, a Requirements table is initially
created. From these requirements we identify the actors and use cases. We create a Timer
block to define its behavior based on these identified Use Cases.

To define the Timer properties, we create operations and properties to the Timer block. To
enable the user to reset, stop, pause etc., we create these as signals so the user can command
the system when it is being executed. State Machine and Activities are used to define the
system behavior and its different states of operation.

1
|_RequirementsTree .~ RequirementsSatisfyTable 4T Ao A CoUNEDOWnATIMer . SignalTable ~ TimeEventTable

The RequirementsTree and UseCases worksheets are used to define the requirements that
should be met by the model and its use cases. The CountDownTimer, SignalTable, and
TimeEventTable worksheets are used to create blocks and events that will trigger the system
to transition to a different state.

TimerBehavior StateMachineProperties TransitionTable «

The TimerBehavior worksheet is used to create a StateMachine that will define the states
at which the system will exist and its behavior at different states. It is also used to create
operations and activities that will define system behavior. The StateMachineProperties
worksheet is used to create the states and the TransitionTable worksheet is used to define
their transition and events that triggered them.

“ActivityNodeTable “OpaqueBehaviorTable ™~ ActivityObjectFlowTable ™ ActivityControlTable ™

ActivityNode Table and OpaqueBehavior Table is used to create activity nodes and behaviors.
ActivityObjectFlow table and ActivityControlTable is used to create flows between the
actions and nodes created in previous tables.

39

40 + 4 Count Down Timer Model

The StateBehaviorTable, StateBehaviorFlowTable and StateControlFlowCondtionTable
worksheets are similar to that of previously mentioned worksheets. The only difference
being that they are used to create activity flows that define states entry behavior.

4.1 Requirements Table

The Requirements Table worksheet is used to create Requirements. The configuration file
is defined in a way that this table can be use to create two levels of requirements. As shown
below, requirements for the system are created.

RequirementsSatisfy Table worksheet is used to create a Satisfy relation between the Re-
quirements, Blocks and its properties. This table will be used to verify if the requirements
are met once the system has been created.

Requirements Table

Requirement Requirement 2nd Level

ID* Name ID* [Name Specification
1|Timer
1[Timer 1.1|Accurate The timer should count down every 1 second.
1[Timer 1.2|Functions The timer must have functions to start, reset, pause and notify user.
1[Timer 1.3|Working The timer should continue counting even after 0, until user signals to stop.
1|Timer 1.4|Notify The timer should notify the user at 0.

4.2 UseCase Table

The Actors tab is used to identify the actors, while the UseCases tab is used to associate
these Actors with UseCases.

To create an association between Actor and UseCase, enter the Actor Name in the Actor
column, followed by the UseCase in UseCasel column.

To create an association between UseCases, Enter the Actor name in Actor column followed
by the UseCase name in the UseCasel column and associating UseCase in the Associated-
UseCase2 column.

4.3 CountDownTimer Table « 41

The UseCases table is created as shown below :

Use Case Actors

Actors
User
Actor UseCasel Associated UseCase2 Associated UseCase3
User count down
User count down notified
User count down notified count down
User count down pause
User count down pause count down
User count down reset
User count down reset count down
User notified
User notified count down
User notified count down notified
User notified count down pause
User notified count down reset
User pause
User pause count down
User pause count down notified
User pause count down pause
User pause count down reset
User reset
User reset count down
User reset count down notified
User reset count down pause
User reset count down reset

4.3 CountDownTimer Table

This table is used to create the Timer block, signals & events that will be used later in cre-
ating the model.

To create a block, enter the name in the Block Name column.

To create signals, enter a name for the signal in the Signals column, and its package name
in the PackageName column

42 « 4 Count Down Timer Model

Note: Two kinds of events can be created in this worksheet, Signal events and Time events.

These events are created based on the signals that are being used.

Timer Events & Signals

s Events. Timed Event Instances
[CountDownTimer
e imer Timer
[CountDownTimer instance
|Ct imer reset
CountDownTimer notified
[CountDownTimer timeup
CountDownTimer start
[CountDownTimer ause
CountDownTimer stop
[CountDownTimer resume
i imer startEvent
[CountDownTimer stopEventa
C: imer auseEvent
CountDownTimer
[CountDownTimer stopEventB
[CountBownTimer p
[CountDownTimer resetEvent
[= imer notifyEvent
[CountDownTimer timeupEvent
< imer Timegvent
Signal Table

The Signal table is an extension of the previous section. Here, we relate the signals that
were created with the SignalEvent. Later in the model, we will use these signal events as
triggers to define transition between states.

To assign a signal to SignalEvent, enter the SignalEvent name from the previous table and
its corresponding signal in the Signals column.

4.3 CountDownTimer Table « 43

SignalEvent

notifyEvent

Sig_lnals

timeupEvent

startEvent

stopEventA

pauseEvent

resumeEvent

stopEventB

stopEvent

resetEvent

|SignalEvent

Signals

notifyEvent

notified

timeupEvent

startEvent

stopEventA

pauseEvent

resumeEvent

stopEventB

stopEvent

resetEvent

Time Event Table

The Time Event table is used to create the duration for the timed event.

Enter the event name in the Timed Event column, followed by a name for the duration in

the Expression Name column.

Next, enter the required time duration in the Duration column. Assign the duration to the
TimeEvent by entering the event and expression name in their respective columns.

44 + 4 Count Down Timer Model

Time Event & Duration

Timed Event Expression Name Duration

TimeEvent
Time Event & Duration

Timed Event Expression Name Duration
TimeEvent
TimeEvent time

4

Time Event & Duration

Timed Event Expression Name Duration
TimeEvent

TimeEvent time

TimeEvent time 1s

Now we have created the necessary Events and Signal that will be used to define the State
and Transition for the system.

4.4 Timer Behavior Table

Using the Timer Behavior table, we will define properties, operations and the behavior aspect
of the system using State Machines and Activities.

To create a property, enter the block in the Block Name column and its property in the
Block Property column.

Based on the use case, we will create the operations expected of the system: restart, count-
down and notify.

To create operations, enter a name for the operation and the block in the respective columns.
Next, we will create a StateMachine to define the system.

Enter the block name in the Block Name column and, in the same row, enter a name for
the StateMachine in the StateMachine column. This will create a StateMachine for the
Timer Block as shown below.

To make sure that the Timer Block exhibits the behavior of the StateMachine entered in the
previous step, enter the StateMachine in the Block StateMachine Behavior column. In
doing this, we are defining the state machine as a classified behavior.

Next, we create activities based on the operations created for the block.

4.5 StateMachine Properties Table + 45

Enter the block name in the Block Name column and the activity name in the Activities
column, we have now created activities for the block Timer. In the Block Operations Be-
havior column, enter the respective operations for the activities created.

Block Behavior Properties

Timerstate
Timerstate
Timerstate
Timerstate
Timerstate
Timerstate
Timerstate
TimerState

Ti

Timerstate
TimerState
Timerstate

Trimerstate

Block StateMac
Timerstate
Timerstate
TimerState
TimerState
Timerstate
TimerState

restart Timerstate
countdown Timerstate
notify TimerState

4.5 StateMachine Properties Table

Next, we define the states and region for the TimerState we created previously.
Enter the StateMachine name followed by the region name in the Region column.

Create the Initial and Final states and the states at which the system will exist in respective
columns, as shown below.

46 + 4 Count Down Timer Model

StateMachine Properties

State Machine Region Initial State States Final State
TimerState

TimerState Region

TimerState Region start

TimerState Region end
TimerState Region end

TimerState Region notify

TimerState Region paused

TimerState Region ready

TimerState Region running

TimerState Region stopped

Transition Table

To create a transition between states with triggers, enter a name for the transition in the
Transitions column (a row will be added with Source and Target state cells highlighted).

Enter the source state in the Source State column and the target state in the Target State
column to create a transition between them.

To add a trigger that starts the transition, enter the transition name and trigger name. The
source and target state fields will be updated automatically. To add an event to the trigger,
enter the event name in the appropropriate column. For example, to assign startEvent as a
trigger between the start and ready states, enter the transition name, then provide a name
for the trigger. Since startEvent is a signal event, it is populated in the Signal Event column,
as shown.

4.6 ActivityNodeTable « 47

State Transition Properties

Transitions |Source State |Target State [Trigger |
st-rdy [start [ready | Il

D E F G H
State Transition Properties

1
Time Event

Transitions [Source State Target State Trigger Signal Event
st-rdy [start ready
Is_t-rdv start ready rdy sig

4

State Transition Properties

Transitions [Source State Target State Trigger [Signal Event Time Event
st-rdy ‘start ready]
st-rdy ktan ready rdy sig Is(arlEvent
State Transition Properties
Transitions Source State Target State Trigger Signal Event Time Event
ntf-run notify running notify_time notifyEvent
ntf-run |notify running
pau-run paused running
Ip_au-run paused running pause_run resumeEvent
EEU-S(E EaUSEd S(OEEEU
pau-stp paused stopped pause_stp stopEvent
rdy-run ready running
rdy-run ready running ready_trig startEvent
run-ntf running notify
run-ntf running notify run_notify timeupEvent
run-pau running paused
run-pau running paused ready pause pauseEvent
run-run running running
run-run running [running run TimeEvent
run-stp running stopped
run-stp running stopped ready_stop stopEventA
Iﬂ-eﬁﬂ 510 zpen end
stp-end stopped end stp_end stopEvent8
stp-rdy stopped ready
stp-rdy stopped ready stp_rdy resetEvent
st-rdy start ready
st-rdy start ready rdy_sig startEvent

4.6 ActivityNodeTable

Next, we define the activity created in the TimerBehavior table,

To create actions and flow for an activity, enter the name of activity to which the above
mentioned elements will be created.

In the Call Behavior Actions column, enter a name to create call behavior actions.

Similarly, this table is used to create initial an final nodes, forks, opaque behaviors, decision
nodes, and send signal actions. Each of which can be created by providing a name for the
node and its activity.

48 « 4 Count Down Timer Model

To assign the signal that will be send when a signal action is invoked, enter the name in the
Send Signal Action column and the signal that will be sent in the Signal column (signals
that were created in CountDownTimer table).

Block Activity Behavior

Name | Call Behavior Actions

Block Activity Behavior

ivity Name | Call Behavior Actions
(countDown
countDown
notifyuser
notifyUser
notifyUser
resetTime
resetfime
resetTime

Behavior |Decision Node |Flow Final Node _|Send Signal Action

Fin

Initial Node [Final Node Fork Node

sendsignal

timeup

Start

End

notified

Start

erd [[[[

otk I [I [

Opaque Behavior Table

This sheet is used to assign OpaqueBehavior to an action and define its parameter and

equation.

To assign OpaqueBehavior to an action, enter the Opaque Behavior created in previous
table in the Opaque Behavior column.

Note: The available actions will be automatically listed in Opaque Action column, as shown

below.

4.6 ActivityNodeTable + 49

To create an equation, enter it in the Opaque Equation column.

Opaque Behavior Properties

Opaque Behavior Name Parameters Direction Opaque Equation
Opq_behavior

Opaque Behavior Properties

Opague Behavior Name Parameters Direction Opaque Equation
Opqg_behavior time_out=t_in-1

To manipulate the parameters and direction, we first need to create links between the actions.

Activity ObjectFlow Table
This table is used to create object flow between activities.

To create object flow between actions, enter the source action name in column E (Activity
Node column) and its activity in the ActivityName column followed by the target action
information in column G(ActivityNode column) and its activity in the Activity Name
column.

The object flows between the actions are created, as shown below.

ObjectFlow Table

Activity Name Activity Node Activity Name Activity Node
countDown

countDown |get_updatedVvalue countDown Fork

countDown Fork countDown read_time
countDown Fork countDown update_time
countDown read_time countDown ForkN

countDown evaluate Expression countDown update_time
countDown ForkN countDown evaluate_Expression
countDown ForkN countDown Decision
notifyUser

resetTime

resetTime Fork resetTime update_newValue
resetTime Fork resetTime new_lnput
resetTime |get_oldValue resetTime reset_oldVvalue
resetTime reset_oldvalue resetTime update_newValue
resetTime new_Input resetTime update_newValue
resetTime reset_toZero resetTime reset_oldValue
resetTime |get_newValue resetTime Fork

Activity ControlFlow Table

The Activity Control Flow table works similar to the Object Flow table,

50 ¢ 4 Count Down Timer Model

Enter the source action and activity name in the first two columns, followed by the target

activity and action name.

Controlflow Table
ACt Name AWVH Node hm:ne AW Node
countDown
«countDown get_updatedvalue
countDown Fork
countDown Start
countDown Start countDown read_time
countDown End
countDown read_time
countDown read_time countDown evaluate_Expression
countDown update_time
countDown update_time countDown Decision
countDown evaluate_Expression
countDown evaluate_Expression countDown update_time
countDown ForkN
countDown Decision
countDown Decision countDown Fin
countDown Decision countDown sendSignal
countDown Fin
countDown sendSignal
countDown sendSignal countDown End
notifyUser
natifyUser sendNotification
notifyUser sendNotification notifyUser notified
notifyUser Start
notifyUser Start notifyUser sendNotification
notifyUser End
notifyUser notified
notifylUser notified notifylser End
resetTime
resetTime Fork
resetTime Start
resetTime Start resetTime reset_oldvalue
resetTime End
resetTime get_oldvalue
resetTime resst_oldValue
resetTime reset_oldValue resetTime update_newValue
resetTime new_Input
resetTime reset_toZero
resetTime get_newValue
resetTime update_newValue
resetTime update_newValue resetTime End

Once we have completed the Behavior flow tables, we have to sync the input and output
flow of Opaque Behavior and its call action. To do this, go back to the Opaque Behavior

table.

The Input and Output pins will be displayed as argument and result by default. We change
this value based on the Opaque Equation parameter. Rename the argument in both tables
to time_in and time out instead of result and argument for the Opq_behavior.

4.7 State Behavior Table -«

51

Opaque Action-->OpaqueBehavior

(Opaque Behavior Name |Parameters Direction Opague Equation Opaque Action Opaque Behavior Input Pin Output Pin
Opg_behavior time_out=time_in-1 evaluate_Expression Opq_behavior

Opg_behavior result out time_out=time_in-1 evaluate_Expression Opg_behavior argument

Opg_behavior argument in time_out=time_in-1 evaluate_Expression Opq_behavior result

{

Opaque Behavior Properties

Opaque Action-—->OpaqueBehavior

Opaque Behavior Name |Parameters Direction Opague Equation Opague Action (Opaque Behavior Input Pin Output Pin
Opg_behavior time_out=time_in-1 evaluate_Expression Opq_behavior

Opg_behavior time_out out time_out=time_in-1 evaluate_Expression 0pq_behavior time_in

Opg_behavior time_in in time_out=time_in-1 evaluate_Expression 0pq_behavior time_out

We have created state machines and activities to define the behavior of the system. As of
now StateMachine and the activities are defined as seperate behaviors of the same system.
In the following section, we will define how the system behaves at each state using the
activities we created.

4.7 State Behavior Table

The State Behavior table will list the states created in the StateMachine Properties work-
sheet.

Next, we will assign an entry behavior to the system.

In the example, we will create an entry behavior to the running state. Enter the state name
in the State Name column.

In the State Entry Behavior column, enter a name to create an entry behavior (decrease
in this example).

Next, we will define nodes and actions to the entry behavior, as shown below.

To assign a behavior to the call actions we created in an earlier section, enter the behavior
you want to assign in the Behavior column adjacent to the call actions.

52 « 4 Count Down Timer Model

State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior

end

notify

paused

ready

running

stopped

[

State Entry Behavior Table
State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior

end

notify

paused

ready

running

stopped

running

decrease

State Name
end

State Entry Behavioir

Initial Node

Final Node

Call Behavior Actions | Behavior

notify

paused

ready

running

stopped

running

decrease

running

decrease

running

decrease

running

decrease

I

decrease

{

State Name State Entry Behavioir Initial Node Final Node Call Behavior Actions |Behavior

end

notify

paused

ready

running

stopped

running

decrease

running

decrease

start

running

decrease

running

decrease

decrease

countDown

State Behavior ControlFlow Table

Creating behavior control flows is similar to creating activity control flows.

Enter the source action and activity in the first two columns and target action and activity

in the next column.

4.7 State Behavior Table * 53

State Activity State Activity Node | State Activity State Activity Node
decrease

decrease end

decrease start

decrease start decrease decrease
decrease decrease

decrease decrease decrease end
notify

notify start

notify start notify notify
notify end

notify notify

notify notify notify end
reset

reset start

reset start reset reset
reset end

reset reset

reset reset reset end

test

We have now created the control flows. When we defined a requirement initially, we stated
that the system should notify the user when time reaches zero and should continue counting
down even after reaching zero. To achive this, we will set a guard condition to the control
flow of the merge node created in earlier sections. In a previous section, we have already
create a notify behavior to the state and to send a signal to user.

State ControlFlow Condition Table

In the ControlFlow Condition table, existing contol flows will be listed based on previous
inputs.

To create a guard condition, enter the state activity name in the State Activity column fol-
lowed by the source and target activity node information and enter a guard condition.

54 « 4 Count Down Timer Model

resetTime

State Behavior ControlFlow Condition Table
Node (Source] Node

countDown

notifyUser

countDown

D n

Fin

countbown

Decision

sendsignal

countDown

evaluate_Expression

update_time

countDown read time evaluate Expression
countDown sendsignal End

countDown start read time
countbown update_time Decision

notifyUser notified End

notifyUser sendnot i notifiea

notifyUser Start sendNotification
resetTime reset_oldvalue update_newvalue
resetTime Start reset_oldValue

update_newvalue

End

State Behavior ControlFlow Condition Table
a

[countDawn

[countbown start read_time
read_time evaluate

D, update_time Decision

evaluate_Expression update_time
Decision Fin
Decision
sendsSignal End

notifyuser [sendNotification
tifyU: [start
notifyUser notified End

reset_oldValue

start
reset_oldvalue

update_newvalue

update_newvalue

Ena

Decision

Fin

time>0] |time<q|

countbown
Start read_time
read_time aval xpression
update_time Decision
e update_time
Decision
Decision
End
notifyuser
T notified
notifyuser Start send
notifyuser notified End

s

reset_oldvalue

art
reset_sldvalue

update_newvalue

resetTime update_newvalue End
Decision Fin time>0] [time<0

State State Node (Source. State Node ‘Control Guard Condition

countDown

countDown read_time

countDown evaluate_expression

countDown Decision

countDown update_time

countDown Decision Fin

countDown Decision Fin time>0| [time<0

countDown Dec sendsignal

countDown Decision sendsignal time=0

countDown Ena

notifyUser

notifyUser notified

notifyUser Start sendnotification

notifyUser notified End

resetTime

resetTime start reset_oldvalue

reset_oldvalue

update newvalue

update_newValue

En

5 Turbofan Engine Model

5.1 Introduction

This example model is used to identify design points of a turbofan engine. MapleMBSE
and Cameo Systems Modeler™ were used to create a turbofan example model. The design
point calculations are based on ideal gas turbine cycle analysis.

Initially, a mission statement is defined to specify the scope of the model and to identify
design points at Mach number 0.8 and operating altitude between 350001t to 45000ft with
a bypass ratio between 6-8.

5.2 Turbofan Model

Y

2 -
$ 3
— £
- E 3
v} =
-t
1 2 3 F 5 L] T g

The turbofan system is defined as shown in the diagram above. The system consists of a
twin-spool configuration, with a high pressure turbine driving a high pressure compressor,
a low pressure turbine driving a low pressure compressor, and a fan. Temperature and
pressure are identified at the design points, as shown in the figure. The primary goal is to
identify the design points with optimum SFC (specific fuel consumption) value.

5.3 Requirements

Once the mission statement is defined, system requirements for the turbofan are also stated
for each subcomponent in terms of target efficiency, pressure ratio etc., which have to be
satisfied. The SystemRequirements worksheet in MapleMBSE is used to define the spe-
cifications and target values that have to be achieved. In addition to the system specifications,

55

56 <« 5 Turbofan Engine Model

analysis requirements are created to define the input values which will be used to analyze
the model.

To maintain traceability between system level requirements and mission level requirements,
the DeriveRequirements worksheet in MapleMBSE is used to create derived relationships
between requirements.

5.4 ValueType

The ValueTypesTable and UnitQuantityKind Table worksheets are used to define units
and type of values that will be used to define the system. These valuetypes are used to specify
the type of value properties of the system to be modeled.

5.5 Constraint Blocks

Constraint blocks are created and constraints that will be used in the system are captured
using the ConstraintProperties worksheet. Similar to value types, these blocks are used
to specify the type the constraint property of the system that will be defined.

5.6 System Model

The Turbofan Blackbox is used to specify the properties of the turbofan in terms of values,
subcomponents and ports through with the system will interact.

Once the subcomponents are created we now define the values and constraint properties,
then type them to valuetypes and the constraint block created. A specific worksheet view
is created in MapleMBSE to show components values, constraints and their types.

An Analysis block is created to provide value exchange between the subcomponents. The
Analysis block provides the default values with which the analysis is performed and also
receives the results of analysis.

5.7 Results

The InstanceResults table is used to display the results of analysis performed in the model
using simulation toolkit in Cameo Systems modeller. In MapleMBSE the results are mapped
to Excel graph for visualization. This results worksheet is treated as read-only and used to
only visualize the results of analysis at different altitudes.

5.8 References * 57

To create a new instance:

1. Create a new instance specification by providing a name in the Instance Specification
column in InstanceTable worksheet and type “Analysis Block” as the name of the block
in the Instance of Block column.

2. Define the feature and corresponding value with which the new analysis has to be per-
formed, required input values to be created are ByPassRatioA and targetEfficiency hp-
Turbine.

3. Once the analysis block is defined, specify the inlet properties by creating a new instance
for the InletConditions block, similar to the above method. The required values in this
case are Ta(inlet static temperature in K) and Pa (inlet static pressure in bar).

4. Commit the changes to Teamwork Cloud.

5. Open the model in Cameo or Magic Draw, then create a new block diagram in the
Newlnstance package, drag and drop the analysis block instance.

6. Drop the inletConditions instance into the analysis instance to create a new feature instance
for the Analysis block.

7. Right-click the analysis instance and select simulate to run the analysis.

8. Export the results of analysis as new instance into the Result package under NewlInstance
then commit to Teamwork Cloud.

9. Reload MapleMBSE to see the results in the NewInstanceResults worksheet.

To maintain the traceability between the requirements and the modeled system modeled,
use VerifyRequirementsMatrix to have a verify relationship between system requirements
and value properties of the block. By creating this verify relation, now we have traceability
from system values to system requirements and from system requirements to mission re-
quirements.

The RequirementsTraceability worksheet displays all the requirements from the model
and its relationships such as trace, verify, derived with other model elements.

5.8 References

1. Cohen, H. Rogers. G. and Saravanamuttoo, H. (1996). Gas turbine theory. Harlow:
Pearson education.

2. Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition. Morgan Kaufmann
Publishers.

58 ¢ 5 Turbofan Engine Model

6 UAV Model

6.1 Introduction

This model uses the Object Oriented System Engineering Method (OOSEM) to design a
conceptual model of an Unmanned Aerial Vehicle (UAV). The primary use of UAV in
consideration is to assist forest fire fighting operations in remote areas. The sample model
shows a part of the OOSEM workflow to identify system requirements.

Identi 4
et [Analyse Stakeholder Needs]

Find current limitations Find stakeholder
of the existing system needs

Identify moe and

Gefine the missien -
requirements

Igentify the scope of
sysem to be designed

Identify operating Create system
domain use cases

Identify System
Requirements
S

SenS S

6.2 Analyze Stakeholder Needs

To identify the needs of stakeholders, in this case the fire department, the current operating
domain is modeled to find the existing limitations and expectations of the fire department.
The existing domain is captured using the block definition diagram represented in a table
format in the OperatingDomain worksheet. A causal analysis is performed to identify the
factors that are of interest to the fire department operation [6]. This causal analysis also re-
veals the present limitations in the fire department operation. At this stage, we have identified
the needs of stakeholder based on which we will derive the mission requirements.

59

60 < 6 UAV Model

6.3 Mission Requirement

To determine the scope and mission of the UAV model, we first identify the measure of
effectiveness based on the stakeholder needs analysis. Secondly, we define the operating
domain in which the system to be modeled will operate. The operating domain is represented
using a block diagram and shown in table format using the OperatingDomainUAV work-
sheet. We identify the use cases to determine the high level behavior of the system and its
interaction. Next, from the measure of effectiveness and the operating domain, we can define
the Mission Requirements and stakeholder requirements from the stakeholder needs that
we identified.

6.4 System Requirements

Before identifying the system requirements, we define units, and interfaces that will be used
by the system of interest. A separate package called Interface is create using the Interfa-
ceTable to contain the flows and signals that will be used in the model.

System Behavior

To find the system requirements, we initially define the UAV blackbox that displays: ports
through which the system interacts, its parts, and its values. In addition, we also define the
operations that are expected of the system, and the method to achieve it in terms of activities.
The UAVBIlackBox worksheet displays the model elements mentioned above. Now we
define the system behavior and represent states at which the system will operate and its
events. On identifying the mission profile of UAV, we create detailed states at which the
system should operate. Following this, we use activities to define system behavior. Based
on the use cases, we create the activities since our mission is to control forest fires and we
are still in the conceptual phase. We define system behavior based on this activity.

Weight Estimation

Once we have defined the system behavior we need to determine the system specification
in order to create the system requirements. To identify the general design requirements the
weight of the UAV is first estimated followed by sizing and identifying critical parameters.
The WeightEstimationTable worksheet displays the value properties and constraint prop-
erties need to estimate the weight of UAV. This worksheet also has tables created in excel
that displays specifications of similar aircraft and estimation constants from historical data
[1]. Based on the mission profile the parameter values can be altered based on payload,
range, endurance, etc. when satisfactory values are determined the values are updated to
WeightEstimationBlock and saved to the model in Teamwork Cloud.

6.5 References * 61

Wing Area Estimation

To determine the sizing we initially create the constraints using the WingAreaConstraint
worksheet. Similar to the weight estimation worksheet, the WingAreaEstimation worksheet
is used to find wing area by iterating key parameters. Using the matching plot technique
[2] Wing loading vs Thrust loading is plotted from which we identify the wing area.

We have estimated the weight and wing area based on which other design parameters can
be further evaluated. This example model covers the conceptual phase from stakeholder
need analysis to identify system requirements.

6.5 References

1.

Austin, R. (2010). Unmanned air vehicles: UAVS design, development, and deployment.
Chichester, West Sussex, and U.K.: Wiley.

. Raymer, D. P. (1992). Aircraft design: A conceptual approach. Washington, D.C.: ATAA.
. Sadraey, M. H. (2017). Unmanned aircraft design: A review of fundamentals. San Rafael,

CA: Morgan & Claypool.

. Sadraey, M. H. (2013). Aircraft design: A systems engineering approach. Hoboken, NJ:

Wiley.

. Simard, A. J., & Forster, R. B. (1972). A survey of air tankers and their use. Ottawa:

Forest Fire Research Institute.

Sanford Friedenthal. (2015). A Practical Guide to SysML, 3rd Edition. Morgan Kaufmann
Publishers.

. GLOBAL HAWK SYSTEMS ENGINEERING CASE STUDY.pdf. (n.d.). Retrieved

from https://www.scribd.com/document/409826283/GLOBAL-HAWK-SYSTEMS-
ENGINEERING-CASE-STUDY -pdf

Firefighting Aircraft Recognition Guide - California - PDF Free Download. (n.d.). Re-
trieved from https://docobook.com/-firefighting-aircraft-recognition-guide-california.html

62 <+ 6 UAV Model

7 FMEA Template

7.1 Introduction

This model is used to perform FMEA analysis by accessing SysML model elements from
Teamwork Cloud server. This example shows a FMEA process to identify possible failure
modes of system functions defined in conceptual design of a UAV; however this template
can be used to perform FMEA on different model elements by specifying appropriate path
and elements in the configuration file.

Custom
Create identified stereotyped
failure modes as
model elements

iterative Create a FMEA
process

SysML model

elements

Update model to Add mitigating actions
meet the new for failure modes as
requirements Requirementsinto the

SysML model

Calculate RPN

The FMEA process is performed as shown in the figure, system functions from the model
are accessed and failure modes are identified. Further we identify severity, occurrence and
detection for the failure modes and calculate the RPN (Risk Priority Number). Mitigating
actions for identified failures are created as new requirements. The complete process is
saved back to the teamwork cloud model.

7.2 FMEA

The FMEAMatrix worksheet is used to identify new failure modes for the system function
and to create a dependency (identifiedFM). Once we create new failure modes, we use the
FMEATable worksheet to provide a detailed analysis of the potential failure by specifying
S, O and D from which RPN is calculated.

63

64 « 7 FMEA Template

7.3 Recommended Action

In this process, recommended actions are captured as requirements that can be saved back
to the model. The RequirementFMEAMatrix worksheet is used to create a custom depend-
ency (deriveFMEA) between identified FMEA and recommended actions. The FMEARe-
quirementTable worksheet is used to add specification to the new requirements created as
a result of this analysis.

To use the custom FMEA template:

1.
2.

4.

Add the TWCSysML.mdzip model to the teamwork cloud server.

In Cameo Systems Modeler or Magic Draw, Right-click CustomStereotypes profile—
Project Usage —Export Packages to New Server project.

. In desired project File— Project Usage —Server Project select the exported profile from

previous step.

Update path in the MSE file to get model elements.

7.4 References

1.

Kratzke, R. (2018). Failure Modes Effects Analysis in MBSE. [ebook] Available at: ht-
tps://www.incose.org/docs/default-source/texas-gulf-coast/tgcc-conference-2018/2018-
papers/kratzke-2018-incose-presentation-(for-public-distribution).pdf?sfvrsn=db4796c6 2
[Accessed 22 May 2019].

. Publishing, R. (2019). Failure Mode and Effect Analysis - FMEA - and Criticality Ana-

lysis - FMECA. [online] Weibull.com. Available at: https://www.weibull.com/ba-
sics/fmea.htm [Accessed 22 May 2019].

8 Interface Definition Template

8.1 Introduction

This template is used to show details regarding the interfaces between the systems. ICD
templates in MapleMBSE can be customized to display information that is relevant to the
end users. This example shows different worksheets that can be used to update or review

interfaces and add documentation/comments.

The InterfaceTable worksheet shows the components of a simple Tablet structure its ports

and interface type, this is a review only sheet and not to be updated.

Component | interface Port | PortKind | Conjugated| Interface_Port | Port Kind | Conjugated | Interface Type
Audio Output audioS ProxyPort FALSE it audioOut
Tablet System buttoniN FullPort FALSE
Tablet System buttoniN FullPort FALSE PCB Button
Tablet System hdmi_in FullPort FALSE
Tablet System hdmi_in FullPort FALSE HDMI
Tablet System touchinterface ProxyPort FALSE it Touch
Tablet System inCharger ProxyPart FALSE if Charger
Tablet System MiC ProxyPart FALSE if_inMic
Tablet System blueToothinterface |ProxyPort TRUE if Blustooth
Tablet System headPhonejack ProxyPort FALSE it HeadPhone
Tablet System wifilnterface ProxyPart FALSE in_WiFi
Tablet System light_in ProxyPart FALSE if_ camera
Camera System light ProxyPort FALSE if camera
Input System touchinterface ProxyPort FALSE it Touch
Input System tscreen ProxyPort TRUE if Touch
Controller System tscreen ProxyPart FALSE if_ Touch
Controller System inCharger ProxyPort FALSE if Charger
Controller System hdmi ProxyPort FALSE it HDMI
Controller System bitM ProxyPart TRUE if Bluetooth
Controller System hP ProxyPort FALSE if HeadPhone
Controller System audioM ProxyPort FALSE if_audioOut
Controller System mick ProxyPort FALSE if_inMic
Controller System biM ProxyPort FALSE if_powerBacklight
Controller System wifi ProxyPart FALSE in_WIiFi
Controller System CpWI ProxyPort FALSE VIN
Power System pwr FullPort FALSE
Power System s FullPort FALSE PCB Button
Power System WPWE ProxyPart FALSE VIN
Display Device pblS ProxyPort TRUE if_powerBacklight
Receiver wifiln ProxyPort FALSE in_WiFi
Receiver wifi ProxyPort TRUE in_ WiFi

The InterfaceClasses worksheet shows the interface definitions that are used in the previous
worksheet and can be used to add description or comments to the interfaces.

The ItemFlow worksheet is also a review of the only worksheet that displays a list of all
the item flows in the project and their related components.

65

66 <+ 8 Interface Definition Template

8.2 The InterfaceRequirements Matrix

The IntefaceRequirements matrix shows the relation between the interface requirements
and the interfaces of the components of the tablet

£ £ £ £ £ £ £
=1} =1} [=F) =1} =1} =1} =1}
Component I I I I I I I
p = = = = > > =
" " " " " " "
! ! ! ! ! ! !
2 2 2 2 2 2 2
= = = o o o =
m m m m m m m
= = = = = = =
[a]
@
Interface Name o £ »
a [
5 gl 5| o
h= . = @ u}
o = c ©
= @ [o =
i= o s é @ c
e oo 5 3 =
Specification 5 B 5 = E o
S gl 21 3| 8| E| &
ID |[~|Namé~ - 2| £| =| B| | =T| =

The device must be capable of using
IREQ1 [HDMI HDMI cables to connect with TV.
The device should have a capacitive
IREQ2 [Touch S|touch screen X
The device should have back light with
IREQ3 |Back Ligladjustable brightness

The device must have means to
extend internal storage with external
IREQ4 |SD Card|storage

The device should have 3.5MM jack
and bluetooth to connect with audio
IREQS5 |Head PHdevices X
IREQ6 [LCD Disf The display should be LCD

8.3 ComponentsinteractionTable

The ComponentsInteractionTable displays the list of components of an Arduino controlled
robot and its interfaces, this worksheet shows a list of columns that can be updated by the
user to add the new interface in terms of ports and define its direction.

8.4 References

67

Component [- | Port Direction
Battery -veBattery inout
Battery +veBattery inout
Motor Driver 2Y inout
Motor Driver 2A inout
Motor Driver 4y inout
Motor Driver 1A inout
Motor Driver GND inout
Motor Driver 40 inout
Motor Driver VCC1 inout
Motor Driver VCC2 inout
Motor Driver GND?2 inout
Motor Driver 1Y inout
Motor Driver 1.2EN inout
Motor Driver GND4 inout
Motor Driver 3Y inout
Motor Driver GND3 inout
Motor Driver 3A inout
Motor Driver 3.4EN inout
Servo motor +veservol inout
Servo motor -veservol inout
Microcontroller GND inout
Microcontroller AD inout
Microcontroller A3 inout
Microcontroller A2 inout
Microcontroller 5V inout
Microcontroller 3.3V inout
Microcontroller AL inout
Microcontroller Al inout

8.4 References

1. Karban, R., Troy, M., Brack, G. L., Dekens, F. G., Michaels, S. B., & Herzig, S. (2018).
Verifying Interfaces and generating interface control documents for the alignment and
phasing subsystem of the Thirty Meter Telescope from a system model in SysML.

Modeling, Systems Engineering, and Project Management for Astronomy VIII. doi:

10.1117/12.2310184

2. Model-based Interface Control Documents (icd) Donatas Mazeika- Saulius - ht-
tps://blog.nomagic.com/model-based-interface-control-documents-icd/

68 <+ 8 Interface Definition Template

9 Cost Analysis

9.1 Introduction

This example shows how MapleMBSE can be used to access key parameters of a turbofan
engine from a SysML model and do a trade-off with different material types.

9.2 Results

The Cost Analysis worksheet has two different tables displayed in worksheet results from
the preliminary analysis table shows value properties and its value based on which the cost
estimations are done, the other table displays material properties and cost

Quote From Supplier

Results from preliminary Analysis
Turbofan A |SFC 0.06923
Turbofan_A |Efficiency 0.8765
Turbofan A |no_of blades 36
Turbofan A |Fnet 4963.51
Turbofan B |SFC 0.06386
Turbofan_B |Efficiency 0.88755
Turbofan B |no_of blades 45
Turbofan B |Fnet 4989.81
Turbofan C |SFC 0.06853
Turbofan_C |Efficiency 0.87547
Turbofan C |no_of blades 42
Turbofan C |Fnet 5013.7

9.3 Visualization

Updating the values will automatically update related tables and graphs based on which we
can identify the cost-effective material and key-value property which will affect the overall
cost of the engine.

Material 41 |lifespan 5000
Material A1 |no_of wisits 4
Material A1 |cost_per wisit 70000
Material 41 |cost _per blade 200
Material 42 |lifespan 4000
Material A2 |no_of wisits B
Material A2 |cost_per wisit 70000
Material A2 |cost_per blade 150
Material 43 |lifespan 7000
Material A3 |no_of wisits 3
Material A3 |cost_per wisit 70000
Material A3 |cost_per blade 255

69

70 <« 9 Cost Analysis

10 Variant Management Template

10.1 Introduction

Variant management is used to identify the multiple variants in the product line and their
dependencies to manage complexity. This example shows a simplified view into identifying
the variants in a Tablet model by which the user can create new features to the tablet parts
and use it to create different variations for a tablet

FeatureName
Component
= = =
- HR:
Parts s s 3l | 8] 8 2 e
o o~ n = m] = =
- = — = s} ~ 5] < =
Tablet WiFi Antenna
Tablet Camera X X X
Tablet TouchScreen Panel
Tablet Battery X X X
Tablet Speaker
Tablet Processor
Tablet Power Button
Tablet MIC
Tablet LED X X

10.2 FeatureMatrix

The FeatureMatix shows the different features and their respective parts to which the feature
is related. For example, the 10MP feature is related to the part Camera of the tablet, to create
a new feature user can add a new entry in the FeatureName row and assign it to the corres-
ponding part. The VariantMatix displays the available configuration that was created in the
model. To add a new variant the use can provide a unique name in the VariantModel row
and built it using the available features. VariantTable shows the information from Variant-
Matrix in a tabular view for review.

71

72 + 10 Variant Management Template

VariantModel*
Component Parts
=T [aa)
T @
Features A
d - | = =
Tablet Camera SMP
Tablet Camera 12 MP X
Tablet Camera 10MP X
Tablet Battery 7300mAh X X
Tablet Battery 8600mAh
Tablet Battery 4500mAh
Tablet LED AMOLED X X
Tablet LED MLED

10.3 VariantCheckTable

The VariantCheckTable is a validation to identify conflicts in the feature selection. To
verify the selections first the user has to sort the table. Right click inside the table to Sort
Vertically. In case of conflicts, the row will be highlighted as shown.

Variant Models Features Parts
Model A 7300mAh Battery
Model A 12 MP Camera
Model A AMOLED LED
Model B 7300mAh Battery
Model B 10MP Camera
Model B AMOLED LED
Model B MLED LED

The last row is highlighted because Model B has features AMOLED & MLED which are
selected by the user belongs to the same part LED.

10.4 References

Chami, Mohammad & Forlingieri, Marco & Oggier, Philipp. (2017). Model-Based Variab-
ility Management Solution with SysML.

11 Default Value Generation

11.1 Introduction

This is a MapleMBSE feature that is used to generate default or a sequence of text that is
pre-defined in the configuration file. Use TWCSysML-DefaultValue.MSE to view how
default generation works. This sample has two worksheets: the BlocksTable and the Auto-
GenerateTable. Using the BlocksTable sheet, a user can create components and sub-com-
ponents. In the Components column, provide the name of a component and the name of a
subcomponent. Once the Component and subcomponent have been entered, the other fields
will be automatically populated. This is illustrated in the default value generation example,

where a new Chassis component is created.

Component* PartPropertyName ™ SubComponent* Aggregation”™ Multiplicity ™

Car
Car partPropertyl Door composite 0..1
Car partProperty3 Engine composite 0..1
Car partProperty2 Wheel composite 0..1
Door
Engine
Wheel
Chassis

11.2 Generating the Default Values

Add Chassis as a part to Car as shown below

Component* PartPropertyName ™ SubComponent* Aggregation”™ Multiplicity ™

Car
Car partPropertyl Door composite 0.1
Car partProperty3 Engine compeosite 0.1
Car partProperty2 Wheel compaosite 0.1
Door
Engine
Wheel
Chassis
Car Chassis|

New value in other columns are generated automatically as shown and these generated
values can be edited if needed,

Component* PartPropertyName ™ SubCompenent* Aggregation”™ Multiplicity ™
Car
Car partPropertyl Door composite 0.1
Car partProperty3 Engine compaosite 0.1
Car partProperty?2 Wheel compaosite 0.1
Door
Engine
Wheel
Chassis
Car partProperty4 Chassis composite 0..1

73

74 « 11 Default Value Generation

AutoGeneratedTable shows a simple BOM template using with when the name of a part is
entered rest of the column are auto-generated with a default value

PartName* PartiD™ Description™ Quantity ™ Price”™ Per”™ MaterialType ™
Battery BT344A4 3500mAh, Li-ion 1 25|EA RawMaterial
Camera CA344A55 PrimaryCamera 12MP / Image Stabilization/ 1 30|EA RawMaterial
Display PT4341734 5.5 AMOLED, 455p,Touch Screen’ 1 90 |EA RawMaterial
Enclosure PT3456A23 Al enclosure 1 S0|EA RawMaterial
Memery PT33A343 *description 1 0|EA RawMaterial
Processor SN453G45 Snapdragoen, QuadCore 2.5GHz 1 30|EA RawMaterial
EarPhone *partlD *description 1 0|EA RawMaterial

12 Instance Table

12.1 Introduction

This template is used to view different instances of blocks and their value properties and
allows the user to directly edit or create a new instance of the block.

12.2 The MatrixTemplate Worksheet

The MatrixTemplate worksheet displays the instances in the columns and rows represent
the blocks and their value properties. The intersection of row and column displays the value
of the block with respect to its instance. To create a new instance enter a name for the instance
in the Instances column MapleMBSE will automatically create all the instances hierarchically
and display the related values in the cells which can be updated. New slot values can be
added to the empty cells, based on the value types defined. To delete a slot select the cell
and click on delete button. MapleMBSE will automatically parse these inputs to the right
value types.

Notes:

* When a user enters a string value and expected value is Real the cell will be updated with
default value as “0’.

» This template is used only when the structure of the block for which is the instance is
created is determined previously.

75

76 + 12 Instance Table

Instances
- o~ m <
@ @ @ @
z| e =l 2
] m]]
ValueProperty ® 7] I ®
£ £ £ £
Battery estimated Q 0 0] 0
Battery weight 50| 50 50| 50
Brakes estimated Q 0 0 o]
Brakes weight 434 22 22| 22
Engine estimated 0 0 0 0]
Engine weight 350] 350 350/ 350
Front Axle estimated Q 0 0 0
Front Axle weight 354|354 354| 354
Fuel Tank estimated 0 0 0 0
Fuel Tank weight 15| 15 15/ 15
Radiator estimated Q 0 0] 0
Radiator weight 12| 12 12| 12
Rear Axle estimated 0] 0 0 0
Rear Axle weight 350] 350 350| 350
Steering estimated 0 0 0 4]
Steering weight 34| 34 34| 34
Suspension estimated] 0 0 0
Suspension weight 23| 23 23| 23
Transmission estimated 0 0 0 0
Transmission weight 342| 342 342| 342
Vehicle attachment InstanceExport.xl|Capture.JPG
Vehicle color Black BlacK Black Black
Vehicle estimated 0 0 0 0
Vehicle totalweight 90 90| 90

In the cell with hyperlinks, as shown in the Vehicle attachment property (see above figure),
a user can open the files by clicking on the hyperlink. An empty cell can only be referred
to existing files in other cells. When the file name is misspelled, a dialog box will appear
as below, with the list of files. Note that the files opened are read-only and cannot be edited.

12.2 The MatrixTemplate Worksheet « 77

Unable to find the file please select from the list

InstanceExport.xlsx
Capture JPG
MapleMBSEUserGuide.pdf

Ok Cancel

Clicking cancel will display invalid attachment

Instances
= o~ m =+
3l g gl 8
& & 5 &
ValueProperty al & & o
E|] & £ £
Battery estimated 0 0 0 0
Battery weight 50 50 50| 50
Brakes estimated 0 0 0 0
Brakes weight 434| 22 22| 22
Engine estimated 4] 0 0 4]
Engine weight 350| 350 350| 350
Front Axle estimated 0 0 0 0
Front Axle weight 354| 354 354| 354
Fuel Tank estimated 0 8] 0 0
Fuel Tank weight 15| 15 15) 15
Radiator estimated 0 [1] 0 0
Radiator weight 12] 12 12| 12
Rear Axle estimated 0 0 0 0
Rear Axle weight 350| 350 350(350
Steering estimated 0 0 0 0
Steering weight 34| 34 34| 34
Suspension estimated 0 0 0 [4]
Suspension weight 23] 23 23| 23
Transmission estimated 0 0 0 0
Transmission weight 342| 342 342| 342
Vehicle attachment InstanceExport.xl|Capture.Jqinvaild Attachment
Vehicle color Black Black Black Black
Vehicle estimated 0 0 0 0 | |
Vehicle totalweight 90 90| 90

78 12 Instance Table

12.3 Viewing Information in the MatrixTemplate
Worksheet as an Instance Table

InstanceTable displays the same information as the matrix but it makes filtering and review-
ing instances easier. This table is used only for review and not to create new instances.

Component Instances of the Component -7 Parts ValueProperty Value

Vehicle instance 1 Front Axle estimated 1]
Wehicle instance 1 Front Axle waight 354
Vehicle instance 1 Radiator weaight 12
Vehicle instance 1 Radiator estimated Q
Vehicle Instance 1 Brakes estimated L]
Wehicle instance 1 Brakes weight 22
Vehicle instance 1 Steering weight 34
Vehicle instance 1 Steering estimated [\]
Vehicle instance 1 Engine weight 350
Wehicle instancel Engine estimated []
Vehicle Instance 1 Battery wielght S
Vehicla Instance 1 Battery estimated [1]
Vehicla instance 1 Suspensicn weight 23
Vehicle instance 1 Suspensien estimated 1]
Vehicle instance 1 estimated ']
WVehicle instance 1 Lotalweight 1552
Vehicle instancel color

Vehicle instancel

Vehicle Instance 1 Fuel Tank estimated Q
Wehicle instance 1 Fuel Tank weight 15
Vehicle instance 1 Rear Axle estimated @
Wehicla instance 1 Rear Axle waight 350
Vehicle instance 1 Transmission estimated ']
Wehicle Instance 1 Transmission weight 342

13 Spacecraft Model

13.1 Introduction

The template files in the Spacecraft model files folder require the Spacecraft SysML model,
that can be downloaded from http://sysml-models.com/spacecraft/models.html (Note that
the use of this model is subject to the terms and conditions set by the copyright holders).

The templates in the folder provide a different view of the model in tabular format.

13.2 SPCUseCase Template

The Mission Failure Modes worksheet shows the mission for the Spacecraft system and
associated mission breakdowns. Identified failure modes for the activities are displayed in
the Failure Modes column. The Operational Usecase worksheet displays the use cases,
included and extended use cases.

Activity - |Mission Activities - |Mission Activities - |Failure Modes

Perform Mission Launch S/C

Perform Mission Launch S/C Launch Failure

Perform Mission Maintain Spacecraft Operations

Perform Mission Maintain Spacecraft Operations Maintain Operations Fallure
Perform Mission Deploy Mechanisms

Perform Mission Deploy Mechanisms Deploy Mechanism Falure
Perform Mission Separate from L/V

Perform Mission Separate from L/V Separation Failure

Perform Mission Control Trajectory

Perform Mission Control Trajectory Control Acceleration Acceleration Control Failure
Perform Mission Contrel Trajectory Control Attitude-p Steady State Attitude Control Failure
Perform Mission Control Trajectory Control Attitude-p Attitude Rate Control Failure
Perform Mission Control Trajectory Control Attitude-p Attitude Contrel Failure
Perform Mission Control Trajectory Control Attitude Attitude Control Failure
Perform Mission Control Trajectory Trajectory Failure

Perform Mission Provide Observation Data

Perform Mission Provide Observation Data Provide Data Failure
Perform Mission Mission Failure

The RequirementsTree, FRMatrix and RequirementTreeSPC worksheet show the
spacecraft requirements displayed in the model.

13.3 SPCValueType Template

This template has worksheets that display all the signals and value types that are available
in the Spacecraft model. The Signals worksheet displays the components signals and its
reception. The 10 definitions worksheet has the interface definitions the parameters that
types the interface and its owner. In the table below the I-O Definition command is typed
by the argument from Manage Power. The table displays only the parameters of the Beha-
vior that are of type displayed in the first column.

79

80 « 13 Spacecraft Model

I-O Definitions - |[Typed By - [Name

Alert Message

Attitude Adjust Command

Command

Command argument Manage Power

Command Generate System Commands
Control

Earth Track Data

Earth Track Data result Sense Earth Horizon Angle
Earth Track Data argument Generate Reaction Wheel Spin Command
Electrical Power

Emissions

Fire Data

Fluid

Fuel

Fuel TLM

Gnd CMD

GPS Data

Heater Control

IMU Data

IMU Data argument Generate Reaction Wheel Spin Command
IMU Data result Sense Spacecraft Angular Rate
LV to SC Data

13.4 SPCStructure template

This template displays the structural aspect of the Spacecraft System. The MissionContext
worksheet shows the hierarchy of the where the Spacecraft system and its subsystems are
defined in the operating environment.

In the BlackBox worksheet the Value column displays the value properties of the Spacecraft
System while the Operations column has the list of operations for the Spacecraft. The Ports
column lists the different interfaces with which the system interacts with the external envir-

13.4 SPCStructure template * 81

onment. The Behaviors column shows the system behavior as activities.

Spacecraft | - Values % Operations % Ports % Behaviors
Spacecraft cost
Spacecraft data capacity
Spacecraft deltaVv’
Spacecraft life
Spacecraft mass
Spacecraft max radigtion level
Spacecraft pointing accuracy
Spacecraft power
Spacecraft probability of detection
Spacecraft probability of false alarm
Spacecraft reliability
Spacecraft size
Spacecraft collect observation data
Spacecraft return observation data
Spacecraft receive ground command
Spacecraft provide telemetry data
Spacecraft control attitude
Spacecraft control acceleration)
Spacecraft control thermal environment
Spacecraft provide electrical povver
Spacecraft manage faults
Spacecraft control separation
Spacecraft provide structural integrity
Spacecraft deploy antenna
Spacecraft deploy solar array
Spacecraft solar radiation i/f
Spacecraft em radiation i/f
Spacecraft abservation sensaor i/t
Spacecraft thrust i/f
Spacecraft gnd and & data i/f
Spacecraft LV electrical iff
Spacecraft LV mechanical i/f
Spacecraft thermal radiation iff
Spacecraft sar tracker it
Spacecraft inertial sensar i/f
Spacecraft impact iff
Spacecraft aps iff
Spacecraft horizon tracker iff
Spacecraft drag i/t
Spacecraft sun tracker i/t
Spacecraft magnetometer iff
Spacecraft Control Thermal Environ ment
Spacecraft Manage Fauls
Spacecraft Frovide Telemetry Data
Spacecraft Receive Ground Command
Spacecraft Deploy Antenna
Spacecraft Deploy Solar Amay
Spacecraft Control Attitude
Spacecraft Control Separation
Spacecraft Control Acceleration
Spacecraft Track QOrbit
Spacecraft Collect Observation Data
Spacecraft Provide Electrical Power

The Constraint Parameter worksheet displays the constraints from the model. The Phys-
ical Decomposition worksheet shows the hierarchy of the components of the spacecraft.
The Spacecraft ConnectorMatrix and Spacecraft Connector worksheets display the same
information but as different views.

82 « 13 Spacecraft Model

8 5
HEEIEIRIEIRIE:
| 2| 3| 8| g| &£ gl g 5| &
ZIZ(212|212 3 2| 2| 2| 5|5l 2| 2 8] 2| 5| 5| B B| B3
MHEE R R R R
2212\ 2| 22| 2| 2| 2| 2| 5| 5| B| B| 2| | 5| 5| 5| 5| 5| 5
G|6| 6| 6| 5| 6| 6| 6| G|6| ||| E|S|5|e|lac|@|d|ladld
3] ¥ s s
Ports I El <] |ElE
c = 5 o = &
HBEIPE PR
= o I S I S S S S I e I e - I - e D - I e
IGNEC SW ps X
(GN&C SW p2 %
IGN&C SW pé X
IGNEC SW p7 X
(GNEC SW P8 X
IGNEC SW pl
GN&C SW p3 X
GN&C sW pa X
(GPS Unit pl X
IGPS Unit LEpsi{f
Harizon Tracker pl X
Horizon Tracker horizon tracker i/f
Inertial Measurement Urlpl X
Inertial Measurement Urjintertial reference i/f
Magnetometer pl X
Magnetometer magnetometer i/f
Wheel pl X
Reaction Wheel torgue i/f
Star Tracker pl X
Star Tracker star tracker iff
Sun Tracker sun tracker i/f
|Sun Tracker pl X

The GNCInformationFlow and GNC_InterfaceMatrix worksheets show only the details
of'the GNC Subsystem. The GNC Subsystem worksheet shows all the relevant information
of the different components.

14 Telescope Model

14.1 Introduction

The TMT model is available to download from: https://github.com/Open-MBEE/TMT-
SysMIL.-Model

(Note that the use of this model is subject to the terms and conditions set by the copyright
holders).The Template files in the TMT model folder provide a different view of the telescope
model. Using these templates with a model as big as the TMT, makes viewing the model
elements in a tabular format easier to visualize.

These templates will provide a compact view into the model. Since the TMT is a fairly large
model, before using the template, increase the RAM allocated to MapleMBSE. refer to the
user guide andenable cache at login.

14.2 TMT_Predicate Template

This template is for review only and not for editing the model content. The predicates are
defined in the configuration file that effectively query the model based on Boolean conditions
and will display the results that match these conditions. In the Requirements worksheet
all the requirements in the TMT model is displayed. In the PredicateFilter worksheet, only
the requirements that don’t have Rationale are displayed. The AcceptedRequirements
worksheet will list the requirements that as a tagged value as “Accepted”.

ID* Name Tag = Accepted
3|Ambient Operating Temperature Accepted
5|APS User GUI Accepted
6|APS Responsibility Accepted
7| APS Starlight Accepted
8| APS Acquisition Camera FOV and plate scale Accepted
9|Segment Measurement Error Accepted

The ValueProperty worksheet has the value properties that don’t have a datatype. The IDs
of these values are displayed so that they can be easily found by searching in the modeling
tool.

83

84 « 14 Telescope Model

Value Property Component 1D |

A/D bit CCD Detector 17 0 2 3 4le0laa_1379087596098 221406_43317
arraylLength Procedure Executive and Analysis Sg_18 0_5_c0402fd_1470084213608_649914_168690
Decision Consequence M&S Risk nent 17_0_1_382a051a_1302712866646_684048_15580
ditExposure PEAS PIT Tracking 18 0 5 c0402fd_ 1463788548563 320834 148611
Electron Well size CCD Detector 17 0 2 3 41e0laa_1379087638392_ 256325 43321
Input Pedigree M&S Credibility Assessment 17_0_1_382a051a_ 1302712866646 787170_15584
M&S Management M&S Credibility Assessment 17 0_1 382a051a_1302712866647 296612 15588
People Qualifications M&S Credibility Assessment 17 0 1 382a051a_1302712866647 22710 15589
Pixel Pitch CCD Detector 17_0_2 3 4le0laa_1379087570399_162103_43313
Results Influence M&S Risk Assessment 17_0_1 382a051a_1302712866645 224565 15579
Results Robustness M&S Credibility Assessment 17 0 1 382a05l1a 1302712866647 549076_15586
Results Uncertainty M&S Credibility Assessment 17_0_1 382a051a_1302712866647_9514 15585
Use History M&S Credibility Assessment 17 _0_1 382a051a_1302712866647_106737_15587
Validation M&S Credibility Assessment 17_0_1_382a051a_1302712866646_736398_15583
Verification M&S Credibility Assessment 17 _0_1_382a051a_1302712866646_150481_15582

Similarly, the constraint blocks with parameters that don’t have a type are shown in the
ConstraintParameterType worksheet. The qualified name for these constraint blocks is
displayed so you can find them easily in the modeling tool.

Constraint Block QualifiedName Parameter
constraint StructureA::constraint s

Constraint Y Tests, Examples, and Braindumps::RKA|cpl
Constraint Y Tests, Examples, and Braindumps::RKA|cp2
Constraint Y Tests, Examples, and Braindumps::RKA|cp3

Convert Meters to Percent TMT::Project::Work Packages::Telescofdiameter
Convert Meters to Percent TMT::Project::Work Packages::Telescoflcbe

Convert Meters to Percent TMT::Project::Work Packages:: TelescofchelnPercent

14.3 TMT Activity Template

This template will display the information of activities of the APS system. The APSInter-
changFunction worksheet lists the different packages with activatations that send signals
to Component ports. In the figure below, Sub-Package cmd M1CS has activities that are
defined in the Activity Column. Calibrate Warping Harness has a Send Signal action, Cal-
ibrate Warping Harness cmd, that is received by port PEAS2M1CSOut which owned by
Procedure Executive and Analysis Software.

Package -|Sub-Package T|Activity -][Send Signal -|To Port - [Block. =
External Cmd_M1CS Calibrate Warping Harness Calibrate Warping Harness Cmd PEAS2M1CSOuUt Procedure Executive and Analysis Software
External Cmd_M1CS Get Segment WH Pos Get Segment WH Pos Cmd PEAS2M1CSOuUt Procedure Executive and Analysis Software
External Cmd_M1Cs Get_installed_Segment Get installed_Segment_Query PEAS2MICSOUt Procedure Executive and Analysis Software
External Cmd_Mm1cs [Save M1CS Configuration [Take Snapshot Cmd PEAS2MICSOut Procedure Exacutive and Analysis Software
|External Cmd_Mm1cs send segment PTT Move Segment PTT Cmd PEAS2MICSOut Procedure Executive and Analysis Software
External Cmd_Mm1cs Send Segment WH Cmd Move Segment WH Cmd PEAS2MICSOut Procedure Executive and Analysis Software
External cmd_m1cs Set WH strain Set WH Strain Crmd PEASZMICSOut Procedure Executive and Analysis Software
External Cmd_M1cS Turn Warping Harnesses Off [Turn WH Off Cmd PEAS2MICSOut Procedure Executive and Analysis Software
External Cmd_M1CS Turn Warping Harnesses On [Turn WH On Cmd PEASIMICSOut Procedure Executive and Analysis Software
External Cmd_Mm1cs Zeroing Sensor Readings Offsets Cmd PEASZMICSOut Procedure Executive and Analysis Software
External Cmd_M3CS [Send M3 Offset M30ffset Cmd FEASZTCSOUI Procedure Executive and Analysis Software

The ActivityDecomposition worksheet shows activity breakdown up to 4 level.

vity 2

Top Level Activity - [Sub-Activity 1 - [Sub-Acti - [Sub-Activity 3 ¥[Sub-Activity 4 -]
Rigid Body and Segment Figure correction |Setup APS, Acquire and Start Guiding | Configure APS for SH Test |Center Shear Plate }

|Rigid Body and Segment Figure correction |Setup APS, Acquire and Start Guiding | Configure APS for SH Test |Center Shear Plate |Adjust Shear Plate PEAS

14.4 Signal Interface « 85

Right-click on the table and select create merged view to create a worksheet that will remove
the redundant entries. Note that this new worksheet is only an excel sheet created to simplify
the view and is not linked with the MapleMBSE syncview .

Top Level Activity Sub-Activity 1 S“b"‘zct"”“ Sub-Activity 3 Sub-Activity 4
Rigid Body and Segment Figure Setup APS, Acquire and Configure
correction Start Guiding APS for SH Center Shear Plate Adjust Shear Plate PEAS

14.4 Signal Interface

This worksheet is similar to the APSInterchangeFunctions worksheet but table displays
the APSComponents and their interface (ports) which receive a signal and source of the
signal in the Send Action column

14.5 TMT_OBSE Template

This template file has the views of TMT Observatory System. TMTObservatorySystem
shows the components of the observatory system. Conceptual design template displays the
Components and their attributes like ports and values. The Owned Behaviors column has
the list of behaviors that are performed by the system.

Components - |Ports - |Values - |Signal -|Owned Behaviors ~
Alignmenl and Phasing System
AO Sequencer

AQ Sequencer AQSeq2ESW
AQ Sequencer AQSeq2ESW
AD Sequencer AcquirePointing
AQ Sequencer AcquireDone
AQ Sequencer Painting acquisition
BTO

Common Services
Common Services CS2PEASIn
Common Services CS2PEASOu!
Common Services QueryCompleted
Common Services SendAck
Data Managemenl System
DM

Enclosure

ESEN

ESW Seq
SW-ACQ
SW-ACQ numloop
LSW-ACQ 1

14.6 TMTInstance

The results of instances from the TMT model for different scenarios are shown in their re-
spective worksheets. For example, in the CalibrationsDurationInstances worksheet, the
components and their value properties are displayed. The column represents the different
instances for the calibration scenario and the intersecting cell has a value for that instance
of the component in the rows.

86 « 14 Telescope Model

Instances
calibrations

calibrations Duration

Duration Scenario at

Scenario at 2017.10.26
Components Values 2017.10.18 19.22 |11.56
Acquisition Pointing and Tracking Assembly ditSetup 5 5
APS Mission Conceptual maxPhasingTime 300 300
APT Loop terminate FALSE FALSE
Executive Software adjustGC FALSE FALSE
Executive Software askOperator FALSE FALSE
Executive Software pErr 1 1
Executive Software tAcquisition 33 37
Executive Software tAcquisitionStart 8219 8249
Executive Software TBD 10 10
M3 Alignment Maximum Time m3AlignmentTimeLimit 36000 36000
Maintenance Alignment Maximum Time maintenanceAlignmentTimeLimit 1800 1800
Off-Axis Acquisition Maximum Time offAxisAcquisitionTimeLimit 36000 36000
On-axis alignment maximum time for Post SegmdpostSegXchgTimeLimit 7200 7200
Peak Power Limit Requirement JPL powerPeakLimitEnclosure 8100 8100
Peak Power Limit Requirement JPL powerPeakLimitSummitFacilityBuildi 4100 4100
Peak Power Limit Requirement TMT powerPeakLimitEnclosure 8500 8500
Peak Power Limit Requirement TMT powerPeakLimitSummitFacilityBuildi 4200 4200
PEAS PIT Tracking ditExposure 4 4
PEAS PIT Tracking numStopAck 0 0

The TMTInterfaceView template has the view of interface definitions and connectors

between the components of the APS system. The APSConceptual worksheet has a matrix
view of the interface between the APS components. The SSCAssociationClass worksheet
shows a view of the AssociationBlock and their flow properties.

15 Turbojet Model: Formula Evaluation

15.1 Introduction

A Turbojet Cycle Analysis context block as shown below is defined in the model. This
context block has all the constraints that are used to calculate the specific fuel consumption
(SFC). The inputs that can be changed to compute the best sfc are defined as value properties
in the component blocks. Instance specifications are created for the Turbofan Cycle Analysis
and these instances hold the values for that specific instance of the turbojet system.

87

88 ¢ 15 Turbojet Model: Formula Evaluation

15.2 Instance Specifications and Constraint Properties

This example is used to calculate turbojet design points using the formula evaluation feature.
In this example, the user can see the block hierarchy used to define the turbojet system

model. The design point calculations are based on ideal gas turbine cycle analysis. To use
the formula evaluation, the following conditions are to be met: The formulas are defined in
constraint properties, instances are created based on a top-level analysis context. These in-
stances hold the components and its value properties in form of slots. A parametric diagram

is used to define the constraints between these properties.

bdd [Package] Evaluation Sample [Evaluation Sample1] J

turbine

«block»
Turbine

Et:Real=0.9

T03 : Real = 1200.0

compressor

«block»
Turbojet
Emt : Real = 0.99
Ca:Real=2396
Ta : Real = 223.3
Pa : Real = 0.265
Ei: Real=0.93
f: Real=0.0198
¥
combustor
«block»
nozzle Combustor
«block» Vakes
Nozzle Ec:Real = 0.98
T Ploss : Real = 0.04
En : Real = 0.95 value1 : Real=6.0

«block»
Compressor

pressuref\"a;tior :Real=8.0

Ec:Real=0.87

15.3 Instance Matrix ¢ 89

Component Sub-Component |Value Name Default Value

Turbojet Combustor Ec 0.98
Turbojet Combustor Ploss 0.04
Turbojet Compressor pressureRatio 8
Turbojet Compressor Ec 0.87
Turbojet Nozzle En 0.95
Turbojet Turbine Et 0.9
Turbojet Turbine TO3 1200
Turbojet Cycle AnalTurbojet Emt 0.99
Turbojet Cycle AnalTurbojet Ca 239.6
Turbojet Cycle AnalTurbojet Ta 223.3
Turbojet Cycle AnalTurbojet Pa 0.265
Turbojet Cycle AnalTurbojet Ei 0.93
Turbojet Cycle AnalTurbojet f 0.0198

The component hierarchy worksheet shows the top-level components and their value prop-
erties. The instance matrix displays the instance specification of the top-level Turbojet Cycle
Analysis

15.3 Instance Matrix

Formula evaluation can be used in the worksheet that displays the instance matrix with slots.
The rows of the matrix display the components and their value properties. The columns
display the names of the instances. The matrix displays the value in the slots corresponding
to the value properties and instances. The inputs and output values are not explicitly defined
but is understood based on the objective defined in the template or based on experience.

90 < 15 Turbojet Model: Formula Evaluation

Name turbojet turbojet turbojet turbojet
Cycle Cycle Cycle Cycle
Analysis3 Analysis4 Analysisl Analysis2
Specification
Combustor Ec 0.98 0.97 0.975 0.98
Combustor Ploss 0.04 0.04 0.04 0.04
Compressor Ec 0.87 0.88 0.89 0.87
Compressor pressureRatio 8 7 7.5 8
Nozzle En 0.95 0.95 0.95 0.95
Turbine Et 0.9 0.93 0.9 0.95
Turbine T03 1200 1250 1200 1300
Turbojet Ca 239.6 239.6 239.6 239.6
Turbojet Ei 0.93 0.93 0.93 0.93
Turhojet Emt 0.99 0.99 0.99 0.99
Turbojet f 0.0198 0.0198 0.0198 0.0198
Turbojet Pa 0.265 0.265 0.265 0.265
Turbojet Ta 223.3 223.3 223.3 2233
Turhojet Cycle Analysi§Cp 1005 1005 1005 1005
Turhojet Cycle AnalysisCpg 1148 1148 1148 1148
Turhojet Cycle Analysigg 1.4 1.4 1.4 1.4
Turhojet Cycle Analysisgc 1.33 1.33 1.33 1.33
Turhojet Cycle AnalysigR 0.287 0.287 0.287 0.287
Turhojet Cycle Analysigsfc 0.12111692| 0.11500965| 0.12019785| 0.10977919

The input values of existing slots can be changed based on these values, the output values
will be calculated. New instances can be created by adding a name for the instance in the
column. To run the formula evaluation, use the shortcut Ctrl + Shift + K or Add-ins select
MapleMBSE and Formula Evaluation. MapleMBSE will use excel to call the values and

update the matrix.

	MapleMBSE 2021.0 Application Guide
	Contents
	Introduction
	1 Blocks in MapleMBSE
	1.1 Blocks Table
	Creating a Block

	1.2 Creating Association, Aggregation and Composition
	1.3 Creating Direct Association, Aggregation and Composition
	1.4 Block Generalization, Values and Operation
	1.5 Constraint Blocks

	2 The Fitness Tracker Model
	2.1 Packages
	2.2 Requirements Table
	Creating Requirements

	2.3 Use Case Table
	Creating a Use Case Table

	2.4 Blocks Table
	Blocks Tree
	Block Satisfaction Matrix

	2.5 Internal Blocks Table
	Block Property Table
	Block Connector Table
	Property Connector Table

	2.6 Activity Diagram
	Creating Actions for an Activity
	Creating Actions for an Activity
	Creating Flows
	Activity Breakdown
	Creating Activity Parameters
	Parameter Flows

	3 State Machine Diagram
	3.1 How to Create a State Machine Diagram
	3.2 How to Create States and Transitions
	3.3 How to Create Triggers with Signal Events

	4 Count Down Timer Model
	4.1 Requirements Table
	4.2 UseCase Table
	4.3 CountDownTimer Table
	Signal Table
	Time Event Table

	4.4 Timer Behavior Table
	4.5 StateMachine Properties Table
	Transition Table

	4.6 ActivityNodeTable
	Opaque Behavior Table
	Activity ObjectFlow Table
	Activity ControlFlow Table

	4.7 State Behavior Table
	State Behavior ControlFlow Table
	State ControlFlow Condition Table

	5 Turbofan Engine Model
	5.1 Introduction
	5.2 Turbofan Model
	5.3 Requirements
	5.4 ValueType
	5.5 Constraint Blocks
	5.6 System Model
	5.7 Results
	5.8 References

	6 UAV Model
	6.1 Introduction
	6.2 Analyze Stakeholder Needs
	6.3 Mission Requirement
	6.4 System Requirements
	System Behavior
	Weight Estimation
	Wing Area Estimation

	6.5 References

	7 FMEA Template
	7.1 Introduction
	7.2 FMEA
	7.3 Recommended Action
	7.4 References

	8 Interface Definition Template
	8.1 Introduction
	8.2 The InterfaceRequirements Matrix
	8.3 ComponentsInteractionTable
	8.4 References

	9 Cost Analysis
	9.1 Introduction
	9.2 Results
	9.3 Visualization

	10 Variant Management Template
	10.1 Introduction
	10.2 FeatureMatrix
	10.3 VariantCheckTable
	10.4 References

	11 Default Value Generation
	11.1 Introduction
	11.2 Generating the Default Values

	12 Instance Table
	12.1 Introduction
	12.2 The MatrixTemplate Worksheet
	12.3 Viewing Information in the MatrixTemplate Worksheet as an Instance Table

	13 Spacecraft Model
	13.1 Introduction
	13.2 SPCUseCase Template
	13.3 SPCValueType Template
	13.4 SPCStructure template

	14 Telescope Model
	14.1 Introduction
	14.2 TMT_Predicate Template
	14.3 TMT Activity Template
	14.4 Signal Interface
	14.5 TMT_OBSE Template
	14.6 TMTInstance

	15 Turbojet Model: Formula Evaluation
	15.1 Introduction
	15.2 Instance Specifications and Constraint Properties
	15.3 Instance Matrix

