Application Center - Maplesoft

App Preview:

Mean Value Theorem for Integrals

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Mean Value Theorem for Integrals 

Copyright Maplesoft, a division of Waterloo Maple Inc., 2007 

 

Introduction 

This application is one of a collection of examples teaching Calculus with Maple. These applications use Clickable Calculus? methods to solve problems interactively. Steps are given at every stage of the solution, and many are illustrated using short video clips.  Click on the Image buttons to watch the videos. 

 

This application is reusable. Modify the problem, then click the !!! button on the toolbar to re-execute the document to solve the new problem. 

 

 

Problem Statement 

In essence, the Mean Value Theorem for Integrals states that a continuous function on a closed interval attains its average value on the interval.  Thus, if Typesetting:-mrow(Typesetting:-mi( is the average value, then 

Typesetting:-mrow(Typesetting:-mi( 

for some Typesetting:-mrow(Typesetting:-mi( in Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi(.  This is generally written as Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo(.   

Verify this last equality for Typesetting:-mrow(Typesetting:-mi( , Typesetting:-mrow(Typesetting:-mo(. 

 

Solution 

 

Step 

Result 

Enter the function. 

 

Use the function template from the Expression palette to construct the function.Press [Enter]. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

proc (x) options operator, arrow; `+`(`*`(`^`(x, 2)), `*`(6, `*`(x)), 5) end proc (3.1)
 

 

Using the definition in the Problem Statement section, find Typesetting:-mrow(Typesetting:-mi( 

 

Use the definite integral template from the Expression palette to write the integral, remembering that f has been defined as a function. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

`/`(4, 3) (3.2)
 

 

Construct the equation Typesetting:-mrow(Typesetting:-mi( and solve for the variable Typesetting:-mrow(Typesetting:-mi(. 

 

Enter the equation on a new line and execute.  To solve, right click and select Solve>Obtain Solutions for> c 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mi( 

`/`(4, 3) = `+`(`*`(`^`(c, 2)), `*`(6, `*`(c)), 5) (3.3)
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`-`(3), `-`(`*`(`/`(4, 3), `*`(`^`(3, `/`(1, 2)))))), `+`(`-`(3), `*`(`/`(4, 3), `*`(`^`(3, `/`(1, 2))))) (3.4)
 

 

For the values of Typesetting:-mrow(Typesetting:-mi( obtained, compute Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo(. 

Use the Expression palette to construct the integral; press [Enter] to compute its value. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-msubsup(Typesetting:-mo( 

`/`(32, 3) (3.5)
 

 

 

Compare the value of the integral to Typesetting:-mrow(Typesetting:-mi( 

 

Evaluate Typesetting:-mrow(Typesetting:-mn( at Typesetting:-mrow(Typesetting:-mi(by referencing Typesetting:-mrow(Typesetting:-msub(Typesetting:-mi( through the equation label to which the indexing notation Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi( is appended.  Press [Enter], then  Right click and select Simplify. 

 

 

 

Repeat for the other value of Typesetting:-mrow(Typesetting:-mi( replacing Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mn( by Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mn(. 

 

HyperlinkImage 

 

Typesetting:-mrow(Typesetting:-mn( 

`+`(`*`(8, `*`(`^`(`+`(`-`(3), `-`(`*`(`/`(4, 3), `*`(`^`(3, `/`(1, 2)))))), 2))), `-`(104), `-`(`*`(64, `*`(`^`(3, `/`(1, 2)))))) (3.6)
 

Typesetting:-mover(Typesetting:-mo(`/`(32, 3)Typesetting:-mrow(Typesetting:-mn( 

`+`(`*`(8, `*`(`^`(`+`(`-`(3), `*`(`/`(4, 3), `*`(`^`(3, `/`(1, 2))))), 2))), `-`(104), `*`(64, `*`(`^`(3, `/`(1, 2))))) (3.7)
 

Typesetting:-mover(Typesetting:-mo( 

`/`(32, 3) (3.8)
 

 

 

Legal Notice: The copyright for this application is owned by Maplesoft. The application is intended to demonstrate the use of Maple to solve a particular problem. It has been made available for product evaluation purposes only and may not be used in any other context without the express permission of Maplesoft.   

 

Image