Fernando Michel: New Applications
https://www.maplesoft.com/applications/author.aspx?mid=212164
en-us2021 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemWed, 08 Dec 2021 19:08:28 GMTWed, 08 Dec 2021 19:08:28 GMTNew applications published by Fernando Michelhttps://www.maplesoft.com/images/Application_center_hp.jpgFernando Michel: New Applications
https://www.maplesoft.com/applications/author.aspx?mid=212164
Dijkstra's Shortest Path Algorithm: Step by Step
https://www.maplesoft.com/applications/view.aspx?SID=153973&ref=Feed
Dijkstra's Shortest Path Algorithm is a well known solution to the Shortest Paths problem, which consists in finding the shortest path (in terms of arc weights) from an initial vertex r to each other vertex in a directed weighted graph with nonnegative weights. This implementation shows the step-by-step progress of the algorithm.
<BR><BR>
This work is part of a social service project consisting in the implementation of several graph theory algorithms with step-by-step execution, intended to be used as a teaching aid in graph theory related courses. See also applications for <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153972">Prim’s Minimum Spanning Tree</A>, <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153974">Ford-Bellman’s Shortest Path</A>, and <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153975">Kruskal’s Minimum Spanning Tree</A>.<img src="https://www.maplesoft.com/view.aspx?si=153973/dijkstra.PNG" alt="Dijkstra's Shortest Path Algorithm: Step by Step" style="max-width: 25%;" align="left"/>Dijkstra's Shortest Path Algorithm is a well known solution to the Shortest Paths problem, which consists in finding the shortest path (in terms of arc weights) from an initial vertex r to each other vertex in a directed weighted graph with nonnegative weights. This implementation shows the step-by-step progress of the algorithm.
<BR><BR>
This work is part of a social service project consisting in the implementation of several graph theory algorithms with step-by-step execution, intended to be used as a teaching aid in graph theory related courses. See also applications for <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153972">Prim’s Minimum Spanning Tree</A>, <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153974">Ford-Bellman’s Shortest Path</A>, and <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153975">Kruskal’s Minimum Spanning Tree</A>.https://www.maplesoft.com/applications/view.aspx?SID=153973&ref=FeedTue, 16 Feb 2016 05:00:00 ZFernando MichelFernando MichelFord-Bellman’s Shortest Path Algorithm: Step by Step
https://www.maplesoft.com/applications/view.aspx?SID=153974&ref=Feed
The Ford-Bellman Shortest Path Algorithm is a well known solution to the Shortest Paths problem, which consists in finding the shortest path (in terms of arc weights) from an initial vertex r to each other vertex in a directed weighted graph. This implementation shows the step-by-step progress of the algorithm.
<BR><BR>
This work is part of a social service project consisting in the implementation of several graph theory algorithms with step-by-step execution, intended to be used as a teaching aid in graph theory related courses. See also applications for <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153975">Kruskal’s Minimum Spanning Tree</A>, <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153972">Prim’s Minimum Spanning Tree</A>, and <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153973">Dijkstra’s Shortest Path</A>.<img src="https://www.maplesoft.com/view.aspx?si=153974/FordBellman.PNG" alt="Ford-Bellman’s Shortest Path Algorithm: Step by Step" style="max-width: 25%;" align="left"/>The Ford-Bellman Shortest Path Algorithm is a well known solution to the Shortest Paths problem, which consists in finding the shortest path (in terms of arc weights) from an initial vertex r to each other vertex in a directed weighted graph. This implementation shows the step-by-step progress of the algorithm.
<BR><BR>
This work is part of a social service project consisting in the implementation of several graph theory algorithms with step-by-step execution, intended to be used as a teaching aid in graph theory related courses. See also applications for <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153975">Kruskal’s Minimum Spanning Tree</A>, <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153972">Prim’s Minimum Spanning Tree</A>, and <A HREF="http://www.maplesoft.com/applications/view.aspx?SID=153973">Dijkstra’s Shortest Path</A>.https://www.maplesoft.com/applications/view.aspx?SID=153974&ref=FeedTue, 16 Feb 2016 05:00:00 ZFernando MichelFernando Michel